

Broadening Ontologization Design:

Embracing Data Pipeline Strategies

Chris Partridge

BORO Solutions Ltd

University of Westminster

London, UK

0000-0003-2631-1627

Andrew Mitchell

BORO Solutions Ltd

University of Westminster

London, UK

0000-0001-9131-722X

Sergio de Cesare

Westminster Business School

University of Westminster

London, UK

0000-0002-2559-0567

John Beverley

Department of Philosophy

University at Buffalo

Buffalo, USA

0000-0002-1118-1738

Abstract—Our aim in this paper is to outline how the design

space for the ontologization process is broader than current

practice would suggest. We point out that engineering processes as

well as products need to be designed – and identify some

components of the design. We investigate the possibility of

designing a range of radically new practices implemented as data

pipelines, providing examples of the new practices from our work

over the last three decades with an outlier methodology,

bCLEARer. We also suggest that setting an evolutionary context

for ontologization helps one to better understand the nature of

these new practices and provides the conceptual scaffolding that

shapes fertile processes. Where this evolutionary perspective

positions digitalization (the evolutionary emergence of computing

technologies) as the latest step in a long evolutionary trail of

information transitions. This reframes ontologization as a strategic

tool for leveraging the emerging opportunities offered by

digitalization.

Keywords—ontologization design space, data pipelines,

bCLEARer methodology, ontologization methodologies,

computerization, digitalization, information transmission,

information evolution

I. INTRODUCTION

In ontology engineering there is, in theory at the very least, a
tight coupling between ontologies and ontologization, the
process that produces them. Our aim in this paper is to suggest
that the design space for the ontologization process is wider than
a look at many of the current methodologies would indicate.

To illustrate this at a general level, we partition the space
along two dimensions: the levels of generality and digitalization.
Fig. 1 shows how this partitioned space is currently exploited –
with a focus on the early stages of the process – exposing the
areas that are not being exploited.

Fig. 1. Two-dimensional design space - exploitation

This suggests that the space is broader than current practices
would indicate. That it is possible to open the space up to a range
of potentially radical, new practices based upon data pipelines.
We hope that by outlining some of these practices here we will
make the case for broadening the design space and encourage
the community to adopt a wider range of practices. In large part,
the evidence for this is derived from our work over the last three
decades with an outlier methodology, bCLEARer, which
provides a useful example of these data pipeline practices.

We raise the engineering point that processes as well as
products should be designed – and note a design poverty for
formal ontologization processes relative to the final ontology
products. We provide a factorization of the wider digitization
process into which we believe formal ontologization fits. This
separates computerization and ontologization concerns and we
raise questions about how these components should be ordered.

It is recognized that for foundational issues, setting the right
context can have a bigger impact on success than the quality of
the problem-solving processes. This is the case for
ontologization which needs contextual scaffolding to provide the
perspective that enables one to better understand the scope and
nature of these new practices. Specifically, that one should see
ontologization as an essential part of a much wider more
pervasive phenomena, the latest information evolutionary step –
digitalization (the emergence of computing technologies). From
a short-term perspective, this recapitulates the relatively recent
steps of printing and writing. From a long-term perspective, this
fits into an evolutionary trail of information transitions that spans
life on earth. Within such perspectives, ontologization can be
understood as a tool for exploiting the emerging opportunities
offered by digitalization.

A. Structure of the paper

In the next section, we provide a broad picture of the
ontologization process and introduce two current mainstream
ontologization methodologies to act as a baseline for
comparisons. In the third section we introduce our example
outlier data pipeline-based methodology, bCLEARer. In the
fourth section we build the contextual scaffolding, firstly
situating digitalization in an evolutionary perspective, then
situating ontologization within digitization. In the fifth section,
we situate bCLEARer in this evolutionary perspective. In the
sixth section, we illustrate from within the evolutionary
perspective some of the outlier design choices that bCLEARer
has made.

II. A BROAD PICTURE OF THE ONTOLOGIZATION PROCESS

In ontology engineering one would expect a tight coupling
between ontologies and ontologization, the process that
produces them. One can characterize this as a product-process
distinction, a fundamental concept in traditional engineering.
The engineering mindset differentiates the product (the output)
and the process (the method or system used to produce the
output) and expects both to be engineered. And, as part of the
engineering, to both be quality managed, hence quality
assurance (process) and quality control (product).

A. Top-level ontologies and ontologization

In top-level ontology (engineering) work, the process is often
an invisible relation of the product. An example of this is
provided by the main standard, ISO 21838-1:2021 – Information
technology: Top-level ontologies (TLO) – Requirements [1].
While this references the ontology of processes, the standard
makes no mention of the ontologization process itself. Hence,
unsurprisingly, the standards based upon it do not mention the
ontologization process either.

Some top-level ontologies have associated documentation
for the ontologization process. The top-level Descriptive
Ontology for Linguistic and Cognitive Engineering (DOLCE)
has a related analysis tool OntoClean [2], but this falls far short
of an ontologization process. The Basic Formal Ontology (BFO)
has a book [3] on the ontologization process that assumes the
BFO top-level ontology. We look at this text in more detail
below. The BORO Foundational Ontology has a closely
intertwined bCLEARer ontologization process described in [4]
and [5]. There are a variety of domain level ontologization
processes that we discuss later in this paper.

B. The case for engineering the ontologization process

The importance of engineering the process is reflected in the
often-quoted dictum that: the quality of the process determines
the quality of the product.

For a historical background to this, from the wider history of
innovation, see Mokyr’s The Past and the Future of Innovation
[6] or his A Culture of Growth [7]. He argues that history shows
that technological progress cannot rely on artisanal skills alone,
it needs to be supplemented with formal and systematic (that is,
engineered) knowledge.

Within engineering, this idea was explored, analyzed and
championed in manufacturing in the second half of the 20th
century by quality management pioneers such as W. Edwards
Deming [8] and Joseph Juran [9]. This led to a rich variety of
designs including movements such as Total Quality
Management and its successors Lean Manufacturing, and Six
Sigma. These developed a fertile range of ways of managing
manufacturing processes. An example is the Plan-Do-Check-Act
(PDCA) Cycle used to design, implement, and refine processes
on a small scale – which fits well with the Kaizen philosophy of
continuous improvement, where processes are regularly
reviewed and improved incrementally. This has spread to some
other domains. For example, one can see Kaizen-like principles
being used in the Agile software development methodology.

Within the ontology engineering community, one does not
find a comparatively rich selection of designs and range of ways

of managing the ontologization processes – a kind of process
design poverty. This is despite a few interesting innovative
examples such as the ROBOT tool
(https://robot.obolibrary.org/extract.html). Especially for top-
level ontologies, there appears to be more ‘theory’ for, and so
more attention on, the design of the final product – ‘the
‘ontology’ – than the process – ‘ontologization’ – that produces
it.

 From an engineering perspective, this imbalance looks
unhealthy. One could argue that this poverty arises from the
process being relatively new and under-researched, unlike, for
example, top-level ontology which can build upon a rich
heritage.

1) Process design poverty in logic
Interestingly, a similar poverty of design process has been

pointed out in logic, which is a key part of the last stages of the
‘ontologization’ process. Novaes [10] makes a product-process
distinction for logic, distinguishing the formal product from its
formalization process, noting an almost exclusive focus on the
former in contemporary logic:

“As a discipline, logic is arguably constituted of two main
sub-projects: formal theories of argument validity on the basis
of a small number of patterns, and theories of how to reduce the
multiplicity of arguments in non-logical, informal contexts to the
small number of patterns whose validity is systematically studied
(i.e. theories of formalization). Regrettably, we now tend to view
logic ‘proper’ exclusively as what falls under the first sub-
project, to the neglect of the second, equally important sub-
project.”

She discusses two historical theories of argument
formalization, from Aristotle and Medieval Logic that have
more balance. Both “illustrate this two-fold nature of logic,
containing in particular illuminating reflections on how to
formalize arguments (i.e. the second sub-project).” She suggests
reflecting on these should lead to a broader conceptualization of
what it means to formalize.

Given how much the ontology (engineering) product builds
on formal logic – inheriting many of its (cultural) practices – this
may contribute to the poverty in ontology engineering. This
suggests that developments in the formalization process could be
recruited by and enrich ontologization’s approach to
formalization.

C. Comparing different ontologization processes

In this section, we briefly look at some current mainstream
methodologies that guide the ontologization process to provide
a basis for comparison with the data pipeline approach
exemplified by bCLEARer. This gives us a rough benchmark on
common practices. A caveat: we do not claim that this selection
reflects all the work that is happening in this area. Rather, we are
aiming for examples that lend themselves to our broad
comparison.

In this section we restrict ourselves to ontologization to help
make a clear comparison. This is even though, as we touch upon
later from a bCLEARer data pipeline perspective, there are
interesting features in the methodologies guiding the processes
in other software related domains, such as:

https://robot.obolibrary.org/extract.html

• Waterfall model: clear top-down separation of

concerns.

• Agile: flexible, responsive, efficient, iteration

• DevOps (and DataOps): automation into a data

pipeline to improve and shorten life cycles.

There is a reasonably rich literature on ontology
methodologies, including [11], [12], [13], [14], [15], [16], [17].
We roughly divide these into two broad camps, which we have
colloquially labelled: ‘Ask-an-Expert’ (AaE) and ‘Top-Down-
Classification’ (TDC). We have selected a representative
document for each camp: For AaE, OntoCommons report D.4.2
[18] and for TDC, Building ontologies with Basic Formal
Ontology [3].

One aspect of these methodologies we inspect is the
information pathway they create, the flow or movement of
information through the stages of the overall process. We
specifically explore how this interacts with the two dimensions
of the design space. Firstly, the level of generality dimension
which, for ease of understanding, we introduce from a data
perspective as the metadata, schema and data levels. This is a
simplification as it is about the syntax of the implementation,
whereas generality is also a semantic matter. However, there is
a good enough rough match between syntax and semantics here
to make the substitution fair for our broad classification.
Secondly, the levels on the journey to digitalization dimension
[19], [20]. This looks at the evolutionary steps on the journey to
digitalization. Very broadly a journey that goes from brains to
speech to writing to printing and then computing. We call this
the levels of digitalization. The results of the inspection are in
the earlier Fig. 1.

1) The ‘Ask-an-Expert’ approach
We selected the OntoCommons report D.4.2 [18] as our basis

for AaE. It suits our purposes as it not only describes its own
approach (the LOT methodology) but documents other similar
approaches (including Grüninger & Fox [13],
METHONTOLOGY, On-To-Knowledge, DILIGENT, NeOn,
RapidOWL, SAMOD and AMOD). Together these provide
many good examples of the ‘Ask-an-Expert’ (AaE) approach,
which has its roots in Artificial Intelligence (AI) and knowledge
representation.

This process is largely a rationalist armchair exercise – in the
sense that there is little empirical content. The input for the
process is domain experts – as this quote illustrates:

“The goal of the ontology implementation activity is to build

the ontology using a formal language, based on the

ontological requirements identified by the domain experts.”

[13, p. 28]
Across all the approaches reviewed, there is a similar

information pathway from a level of digitalization perspective.
In the early stages there is an underlying focus on natural
language (from a levels of digitalization view, speech),
sometimes organized into (natural language) competency
questions [13] – as this quote illustrates:

“If domain experts have no knowledge about ontology data

generation and querying, we recommend writing the

requirements in the form of natural language sentences.” [13,

p. 22]
The methodology’s input to the information pathway is the

brains of experts via speech into documented (unstructured)
natural language. Then the methodology broadly separates
concerns [21]: separating the confirmation of content from its
formalization – and chooses to address the first concern before
the second.

We will revisit this point later, but it is important to note that
this separation and ordering choice assumes that reaching
content agreement prior to the formalization process won’t
negatively impact the final product. In this design architecture,
the first stage is a confirmation of content which uses mostly
(unstructured) natural language which is organized and agreed
as a statement of the requirements of the ontology. The second
stage takes the natural language and formalizes them.

The early pathway is not always or entirely natural language,
as there is a mention of the possibility of using more structured
information in the shape of a “tabular technique” using “3 types
of tables: Concepts, Relations, Attributes”. Formalization
(structured information) only really enters the process in the later
stages of the pathway in ontology implementation, after the
requirements (expressed in natural language) are collected.

The paper notes that there is optionally a conceptualization
stage, where an interim concept model based upon the
requirements may be built. Interestingly, it suggests that
“diagraming tools such as MS Visio or draw.io, as well as non-
digital tools as pen and paper or a blackboard” may be used to
build this.

2) The ‘Top-Down-Classification’ approach
We take Building ontologies with Basic Formal Ontology [3]

as the baseline for the ‘Top-Down-Classification’ (TDC)
approach. This provides a clear example with a concise summary
of how it aims to construct an ontology (this shows why it
deserves the top-down-classification nickname). This process is
also largely a rationalist armchair exercise, one that has roots in
biological classification and philosophy. It is a common
approach to developing top-level ontologies in Information
Systems (IS).

“Overview of the Domain Ontology Design Process

Ontology is a top-down approach to the problem of

electronically managing scientific information. This means

that the ontologist begins with theoretical considerations of a

very general nature on the basis of the assumption that

keeping track of more specific information (for example, about

specific organs, genes, or diseases) requires getting the very

general scientific framework underlying this information right,

and doing so in a systematic and coherent fashion. It is only

when this has been done that the detailed terminological

content of a specific science such as cell biology or

immunology can be encoded in such a way as to ensure

widespread accessibility and usability.” [3, p. 49]
This informal view is then structured into a step-by-step

process in a table – see below.

Table 3.1

An outline of the steps to be followed in designing a domain

ontology

1. Demarcate the subject matter of the ontology.

2. Gather information: identify the general terms used in

existing ontologies and in standard textbooks; analyze to

remove redundancies.

3. Order these terms in a hierarchy of the more and less

general ones.

4. Regiment the result in order to ensure:

 a. logical, philosophical, and scientific coherence,

 b. coherence and compatibility with neighboring ontologies,

and

 c. human understandability, especially through the

formulation of human-readable definitions.

5. Formalize the regimented representational artifact in a

computer usable language in such a way that the result can be

implemented in some computable framework.
[3, p. 50]

From this table, we can pull out a level of digitalization
perspective along the information pathway. The first four stages
work with unstructured natural language. Though the terms
‘order’ and ‘regiment’, at steps 3 and 4, suggest some structure
in the information, it is only at step 5 that the information is
formalized, and so fully structured data enters the process. So
here as well, the information pathway to the ontology starts with
brains then via speech or directly into text is documented
(unstructured) natural language.

In the process, there is a similar reliance upon human experts
to justify choices, see:

“The terms in an ontology are the linguistic expressions used

in the ontology to represent the world, and drawn as nearly as

possible from the standard terminologies used by human

experts in the corresponding discipline.” [3, p. 5]
As an aside, it is often not recognized that the terms

themselves, as inscriptions or utterances, are also elements of the
domain that can usefully be represented in the ontology

3) Process Comparison
One can make a rough assessment of the engineering

maturity of these methodologies. As the quotes above hint at,
they are currently collections of "ad hoc rules" with simple
heuristics. There is no background context to act as a foundation
to guide the engineering of the process design – certainly no
common context. Hence, they are, from an engineering design
perspective, at an early stage of development. There is still
plenty of scope for them to undergo the kind of serious
engineering re-design Deming and Juran undertook for
manufacturing.

Both approaches have several features in common, ones that
differentiate them from data pipeline approaches, such as
bCLEARer. From the perspective of digitalization, in both cases,
their early processes for establishing the base ontology focus
their efforts on working with unstructured (pre-digitalization)
natural language related to human understandability, with less
focus on machine understandability. In both approaches the
ontologization happens before the formalization. The
(unstructured) ontological information is captured and
regimented in natural language first and then formalized.

One can broadly divide information into levels of generality.
From a syntactic ‘data’ perspective, these are the natural levels:
metadata, schema and data. For our purposes here, these are a
good enough rough proxy for the semantic levels; top, the most
general, middle and the most specific bottom level – typically
particulars.

We can use this perspective to show how the two approaches
showcased differ and agree. They differ in their approach to the
metadata level. The ‘top-down-classification’ approach works
by framing the middle level in terms of the relevant top-level
structure – so the middle schema level is framed by this
metadata. The ‘ask-an-expert’ approach works explicitly at the
schema level – focusing on the domain. In principle, there is no
reason why the ‘ask-an-expert’ approach could not start with the
metadata level, or the ‘top-down-classification’ approach could
not ignore the metadata level and work at the schema level. The
two approaches agree on their approach to the bottom data level.
They both ignore it (a significant omission, we return to below).

One can relate the design of the digitalization and generality
features. If one chooses to design a process to work with humans
and unstructured information, one needs to recognize that one is
building in scaling constraints that block the processing of large
amounts of information. One way around this is, of course, to
work with the data level indirectly through the schema level.
Data pipeline approaches take a different route and aim to
automate the process so removing these scaling constraints.

III. BCLEARER – HISTORY

In this section, we provide more context with a brief
background history of the data pipeline approach, bCLEARer
and its place in BORO (an acronym for ‘Business Object
Reference Ontology’). BORO’s development and deployment
started in the late 1980s. This early work is described in Business
Objects [4]. BORO’s focus was then, and is now, on enterprise
modelling; more specifically, it aims to provide the tools to
salvage and reuse the semantics from a range of enterprise
systems building a single ontology with a common foundation
in a consistent and coherent manner.

BORO was originally developed to address a particular need
for a solid legacy re-engineering process. This naturally led to
the development of a methodology for re-engineering existing
information systems, currently named bCLEARer – where the
capital letters are an acronym for Collect, Load, Evolve,
Assimilate and Reuse. This was co-developed with a closely
intertwined top-level ontology (the BORO Foundational
Ontology). Hence, the term BORO on its own can refer to either
of, or both, the mining methodology and the ontology.

Our focus here is on the bCLEARer methodology which is
used to systematically unearth reusable and generalized
ontological business patterns from existing data. Most of these
patterns were developed for enterprises and successfully applied
in commercial projects within the financial, defense, and energy
industries.

bCLEARer has evolved organically over the last three
decades both in response to the evolutionary pressures of
experience as well as exploiting the opportunities provided by
evolving digital technology. An early version of the
methodology is described in [4] – with a detailed description in

Part 6. At the time this was developed, the late 80s and early 90s,
the technology support was immature, so while the core process
was systematized it was not fully automated. Over the last
decade, as appropriate technology has emerged, the core process
has been fully automated into a data pipeline. Later versions of
this are described in several places, including [22]. There are
also open-source examples on GitHub (https://github.com/boro-
alpha).

bCLEARer (and its associated top-level ontology) have, over
the years, been configured to exploit a variety of situations
ranging from its original legacy system migration to application
migration to developing requirements and quality controlling
existing systems. A common feature of all these projects has
been the initial collection of one or more datasets (where this
may include both structured and unstructured data – though
structured data is preferred) and its regimented evolution to a
more digitally aligned state.

IV. SITUATING DIGITALIZATION AS INFORMATION

EVOLUTION

We have established that (engineers have learnt that) the
quality of the final product depends upon the engineering quality
of the design of the process. We have also suggested that the
mainstream ontologization processes are very lightly engineered
with a weak background context. This indicates that there is an
opportunity to develop a more engineered ontologization
process. What is less clear is what form this engineering should
take.

Over the last three decades, the evolution of bCLEARer’s
practices was initially driven by experience. This pragmatic,
experiential approach is supported by many including Aristotle
[23] who said, “for the things we have to learn before we can do
them, we learn by doing them”. Reflecting upon the process has
always been a central part of the practice. However, in the last
decade, as the practice has matured, questions about the broader
context have naturally arisen and this has led to a much better
understanding of how the practice should be engineered.

This better understanding has merged in large part from a
recognition that for foundational issues, setting the right context
can have a bigger impact on improvements than the quality of
the problem-solving processes. This is not a new idea; it is
already established in many fields. In the context of professional
practice, Donald A. Schön’s “The Reflective Practitioner,” [24]
raised the concept of problem setting as a crucial part of having
a successful outcome. In design thinking, David Kelley
emphasizes the importance of problem framing in his book "The
Art of Innovation" [25] explaining that reframing the problem
often opens the door to more creative and effective solutions. In
systems thinking, Peter Senge’s “The Fifth Discipline” [26]
differentiates between problem identification and problem
solving. For him effective problem solving involves identifying
leverage points – places within a system where a small change
can lead to significant, long-term improvements.

In each of these cases, the initial stage involves developing a
clear understanding of the underlying causes and
interconnections of the entire complex system. Problem solving
then involves developing interventions that address the root
causes.

In the case of ontologization there is a ready-made context
that can provide the perspective needed – this is evolutionary
theory. If one positions ontologization as an essential part of a
much wider more pervasive phenomena, the latest information
evolutionary step – digitalization (the emergence of computing
technologies) then a new picture emerges. From a short-term
perspective, this recapitulates the relatively recent steps of
printing and writing. From a long-term perspective, this fits into
an evolutionary trail of information transitions that spans life on
earth. Within such perspectives, ontologization can be
understood as a tool for exploiting the emerging opportunities
offered by digitalization.

We can then position the bCLEARer practices into the
overall evolutionary context. This leads, in turn, to a clearer
picture of the specific evolutionary pressures within the practice.
From the start, bCLEARer has been framed in terms of
information engineering, evolution and revolution. The narrative
in [4] was the evolution of information paradigms. For much of
its early life the focus of bCLEARer’s evolution has been
pragmatic practice adapting to the evolutionary pressures
presented by actual ontologization with only a modicum of
reflection upon the nature of the process. In the last decade or so
there has been more reflection on what these practices might
reveal. We are reaching a conclusion that the best way to
understand the design of the process is to make the originally
evolutional framing much richer – to firstly more clearly frame
the process as digitalization and secondly to show the
digitalization as part of a wider trend that frames evolution in
terms of information.

In the next section, we set up a broad picture of this wider
trend of evolving information. In the section after that we situate
digitalization as one transition in that evolution.

1) Situating digitalization as information innovation
Digitalization is an information transition – and it turns out

information transition is a ubiquitous pattern which can be used
to frame the whole of macro-evolution. This provides a
reassuringly broad context where digitalization is the latest in a
long history of information transitions.

Maynard Smith and Szathmáry [27], [28], [29] suggest that
macro-evolution can be characterized as a series of information
transitions and that one can frame the whole of macro-evolution
in these terms:

“… that evolution depends on changes in the information that

is passed between generations, and that there have been

‘major transitions’ in the way that information is stored and

transmitted, starting with the origin of the first replicating

molecules and ending with the origin of language.”
And these changes in information transmission, the passing

of “information … between generations”, are central to
evolution. Maynard Smith and Szathmáry provide a table of
seven major transitions, where the third is the "genetic code" and
the seventh is "language". Each transition not only transforms
life but also transforms the way life evolves – and so, in a sense,
evolution evolves through transformations in information
transmission. They also suggest that each of these transitions has
accelerated and expanded evolution enabling more complex
entities to emerge quicker.

https://github.com/boro-alpha
https://github.com/boro-alpha

Jablonka and Lamb [30] expanded this framework saying:

“… we argue that information transmitted by non-genetic

means has played a key role in the major transitions, and that

new and modified ways of transmitting non-DNA information

resulted from them.”
More specifically, they argue that:

“The evolution of a nervous system not only changed the way

that information was transmitted between cells and profoundly

altered the nature of the individuals in which it was present, it

also led to a new type of heredity—social and cultural

heredity—based on the transmission of behaviorally acquired

information.”
This new type of heredity enables even faster, more flexible,

more complex evolution. One key feature is that the social and
cultural heredity is not (like genetic heredity) necessarily
dependent upon (genetic) life cycles, so it can give rise to
adaptations which easily spread through a population within a
life cycle. This social and cultural adaptation is orders of
magnitude faster than genetic evolution and, particularly in
changing environments, faster adaptive evolution is more
successful. Human culture is a good example of this.

In Evolution in four dimensions: genetic, epigenetic,
behavioral, and symbolic variation in the history of life [31],
Jablonka and Lamb, describe in Chapter 9 – Lamarckism
Evolving: The Evolution of the Educated Guess how new types
of non-genetic heredity – behavioral and symbolic inheritance –
enable a new directed evolution. They label this, understandably,
Lamarckian.

“… the variation on which natural selection acts is not always

random in origin or blind to function: new heritable variation

can arise in response to the conditions of life. Variation is

often targeted, in the sense that it preferentially affects

functions or activities that can make organisms better adapted

to the environment in which they live. Variation is also

constructed, in the sense that, whatever their origin, which

variants are inherited and what final form they assume depend

on various “filtering” and “editing” processes that occur

before and during transmission.”

a) Evolutionary transitions in information transmission

This Lamarckian ‘targeting’ and ‘constructing’ enables
further evolutionary transitions in information transmission.
Obvious examples from symbolic evolution are the emergence
of writing and printing information technologies. These involve
fundamental “changes in the way information is stored and
transmitted” where writing involved changes in structure and
printing changes in economics. These both clearly led to further
innovations in information evolution. Ironically, this reveals
CRISPR technology, where DNA is selectively modified, as a
Lamarckian genetic evolution.

While the transitions clearly involve the use of new
technology, closer examination (see, for example, Ong [32] and
Olson [33]) reveals they depended upon the coevolution of
human behavior and external information technologies. Where
both the emergence and exploitation of the technology depends
upon intertwined coevolution with human behavior.

There is a similar intertwined evolution of behavior and
technology so far in the emergence of computing technology.
This current transition is often broadly called, in the context of
enterprise processes, ‘digitalization’ – which includes
‘digitization’, the process of converting information, data, or
physical objects into a digital format, readable by computers.

b) Domestication as an example of co-evolution

A more familiar example may help us to appreciate the
nature of coevolution – the domestication of plants and animals.
This has been studied as a distinctive coevolutionary relationship
between domesticator and domesticate in a range of research
[34], [35]. In this domain, it is easy to see that both parties (the
domesticators and domesticates) coevolve in the sense of
contributing to the relationship. Zeder [34, p. 3191] describes
domestication as a:

“… relationship in which one organism assumes a significant

degree of influence over the reproduction and care of another

organism in order to secure a more predictable supply of a

resource of interest.”
Our relationship with the new digital forms of information

technology can be described in a similar way. One where we
domesticate our computer systems controlling their breeding.

c) A new ‘digital’ form of information transmission

In The Selfish Gene, Dawkins [36] introduced an idea. He
distinguished between genes as “replicators” that pass on copies
of themselves through generations and organisms as “vehicles”
or “survival machines” constructed by genes to survive in the
environment and so ensure their continued replication.

One could adopt a ‘promiscuous ontology’, one that regards
computer systems as a form of life subject to evolution [37],
[38], [39]. If so, then computers can easily be seen as “vehicles”
for the information they carry and replicate as well as things we
domesticate and breed. Furthermore, the emergence of these
individuals then passes the Smith and Szathmáry test in so far as
it radically ‘changes the way information is stored and
transmitted’ directly between these individuals – and with
humans.

One could be less adventurous and instead see the computer
systems as an extension of humans [40]. In this view, computer
systems are replicators rather than vehicles – they are part of the
apparatus transmitting information rather than “survival
machines” in a computer ecosystem. Even on this view, they
pass the Smith and Szathmáry test. So, either way, one can see
them as providing an opportunity for an information transition
[20].

2) Narrower context – Lamarckian choices for co-evolution
If, as looks likely, history repeats itself and this digital

transition follows the pattern of most previous transitions, then
it is likely to involve the coevolution of human behavior and
digital technology. The energy enterprises currently devote to
their digitalization efforts show an intuitive understanding that
some kind of directed effort needs to be made. From our
evolutionary perspective, we can see this as our culture starting
to co-evolve with the new technology – looking to construct the
Lamarckian variations that will exploit this opportunity. What is
less clear is which Lamarckian constructed variations are likely

to lead to significant success – in the language of evolution to be
able to exploit the natural selection pressures well.

Maybe history has a clue. A common historical narrative is
that technology drives change, that it is the emergence of a new
technology that initiates the associated cultural change. Careful
study reveals a more interrelated pattern of co-evolution between
technology and culture. Where cultural change often prepares
the ground for technological innovation and then feeds off it and
feeds further innovation. Olson [33] provides a relevant
example, explaining how cultural developments in Western
Europe from the 9th century onwards played a key role in the
invention of moveable type in the 15th century. This
technological innovation then laid the ground for developments
in Western science in the 16th and 17th centuries. So maybe the
coevolution of culture and digital technology evolution can give
us some clues on where to target Lamarckian variations.

It is well-accepted that work in logic and mathematics laid
the foundation for computing. If we look at the culture of this
work, then we can see some trends that help us to target
variations to help the co-evolution. Well before the introduction
of digital computers, Frege [41] uses the analogy of a
microscope and the eye to explain how his formal language
compares with ordinary informal language, noting that it
provided a superior sharpness of resolution. Carnap [42] talks
about ‘rational reconstruction’ (rationale Nachkonstrucktion).
Quine [43] says that one doesn’t merely clarify commitments
that are already implicit in unregimented language; rather that
one often creates new commitments by regimenting. Quine notes
that paying attention to the ontological commitment often leads
to radical ‘foreign’ differences [44, pp. 9–10]: “Ontological
concern is not a correction of lay thought and practice; it is
foreign to the lay culture, though an outgrowth of it” Adding
“There is room for choice, and one chooses with a view to
simplicity in one’s overall system of the world.” Lewis [45, pp.
133–5] following the theme of ‘outgrowth’, argues that the
differences are a result of taking the lay common sense seriously,
by trying to make it simpler and consistent.

3) The ontologization value chain
The bCLEARer methodology is an example of data pipeline

approach, which is the topic of this paper. It has, through
experience refined these historical intuitions, developing a view
of the digitalization process as a network of transformation
processes in a data pipeline. One way to characterize this is as a
value chain, where each transformation adds value. We briefly
outline what a value chain is below and then describe the
factorization of digitalization into component transformations.

a) Recruiting the value chain view

In manufacturing, Porter’s value chain [46] provides a useful
tool for broadly characterizing processes as a system of
transformations. The system is provided with inputs which feed
into a network of transformation processes. This network feeds
into the output. The characterization is recursive. Each
transformation process can be seen as a sub-system with its own
value chain.

We recruited a lightweight version of this tool to characterize
ontologization. Under this view, at the broadest level, the
ontologization process starts with pre-ontologization

information and is transformed using an ontologization process
into an ontology. It adds value by transforming the pre-
ontologization information into a formal ontology. This reveals
an information pathway that starts with the pre-ontologization
inputs, undergoes transformations and is output as a formal
ontology. Different methodologies have different intermediate
transformations and so different information pathways. While
the inputs and outputs remain similar, the value chain
transformations differ.

b) Factoring digitalization into *computerized and

*ontologized

We firstly factorize digitalization into two types of digital
transitions that it has found useful to target (and construct).
These are *computerization and *ontologization. We use the ‘*’
prefix convention to indicate our specialized use of the term and
differentiate it from the many other senses in which it is used.

*Computerization is the process of converting relatively
unstructured information into formally structured data. It implies
something more than the digitization mentioned earlier, which
just aims at bare computer readability. Formally structured data
refers to information that is organized into a highly defined and
predictable form, typically within a fixed schema or format. So,
a scan of an engineering drawing in, say, PDF format would be
digitized but not *computerized, as there is no direct way for the
computer to read the components of the drawing. Whereas an
engineering drawing in a CAD format, such as native DWG,
would be *computerized, as the information in the drawing is
explicit in its structure and can be read directly by a computer.
*Computerization is intended to be a pragmatic distinction and
while there are borderline cases, there are also cases that clearly
fall into the pre-*computerization and *computerization camps.

*Ontologization is the process of converting relatively
semantically unorganized information into information
organized into a common ontological structure. Typically, the
information is used in a domain, and there is a level of semantic
precision needed for it to be fit for purpose. The *ontologization
organizes the information into a common ontological structure
that is sufficiently fine-grained to capture the requisite semantic
precision.

One way of characterizing *ontologization is that it develops
an explicit picture of ontological commitment [47], [48]. There
is a long tradition of seeing this process as a transformation that
reveals a deeper structure.

Currently, most information systems being digitized have no
precise explicit ontological commitment. So, in practice, the
*ontologization is often a regimentation [43] and rational
reconstruction [42] of what the ontological commitment would
be given some preferred top-level ontology. In bCLEARer’s
case, the top-level ontology is the BORO Foundational Ontology
[5].

c) *Computerization – transitioning from implicit to

explicit formal structure

The bCLEARer methodology has further identified a
factorization of the *computerization transition into two sub-
transitions: surface-*computerization and deep-
*computerization, corresponding to two levels of
*computerization.

The process of transforming unstructured pre-*computerized
information, giving it a highly defined and predictable form is
sufficient to make it surface-*computerized. Much data in data
stores is in this state today. It may, and often in practice does,
have significant implicit formal structure. In some cases, making
the structure implicit may be deliberate, as part of the process of
improving the performance of a system. For our purposes we
want to make the structure explicit to facilitate the
*ontologization. We do this in the process of deep-
*computerization.

Uncovering the underlying implicit form of surface-
*computerized information requires a degree of ethnographic
hermeneutics – one needs to be able to interpret, to understand,
its implicit structure from its perspective. The deep-
*computerization transformation aims to expose this and, as far
as feasible, make the underlying infrastructure transparently
clear.

A simple example of surface-*computerized information
would be SQL table schemas and their associated data without
the foreign keys noted. This meets the criteria for being
*computerized – it has a fixed format. However, when the deep-
*computerization adds the foreign keys, one can appreciate that
the pre-deep-*computerization information had implicit
structure that was not explicitly visible to a computer reading the
data. In other words, it was only surface-*computerized.

There are existing software techniques that work in this
space, that one can build upon. These include refactoring [49]
and clean coding [50]. Both are bodies of practices for
restructuring existing code, altering its internal structure to
improve it, without changing its external behavior. The
restructuring can be recruited to reveal the deeper structure.

From an ethnographical perspective, deep-*computerization
(and maybe surface-*computerization too) is a kind of
‘surfacing’. As Star notes in The Ethnography of Infrastructure
[51] the details are technical and “excursions into this aspect of
information infrastructure can be stiflingly boring”. This means
that large parts of the infrastructure are often invisible, in the
sense that one doesn’t pay attention to them. So, one of the
challenges is training oneself to see, and so surface, the invisible
structure – a practice with similarities to Bowker’s [52] “infra-
structural inversion”, which foregrounds the backstage
operational elements.

As with the other factorizations, this is intended to be a
pragmatic distinction where most cases clearly fall into one or
other camp – but with some borderline cases. One common
borderline case is data cleansing. This includes technical matters
such as resolving encoding issues and the treatment of
whitespaces (which we find are both still common) as well as
keying and spelling errors. While these might degrade the
quality of the surface-*computerized information, they do not
seem sufficiently grave to undermine its *computerized status.
And fixing them does not obviously qualify as immediately
revealing implicit structure – though if they are not fixed, they
can hide structure. For pragmatic reasons, we take fixing these
to be part of the deep-*computerization process.

d) Inter-process dependency

Obviously, there is an order to the surface- and deep-
*computerization process. One surface-*computerizes
information before *deep-computerizing it. Theoretically, at
least, the *computerization and *ontologization processes would
seem to be sufficiently independent that one could undertake
either one without the other – implying that there is a choice in
which to do before the other.

However, the bCLEARer experience is that there are strong
pragmatic reasons for undertaking the full *computerized
transition before undertaking the *ontologization transition [48],
[20]. Our experience has been that the formalization process
inherent in *computerization is best done with raw unaltered
data, straight from the operational ‘wild’. This is because we
found that in cases where the *ontologization process was
carried out on pre-*computerization information, it often
obfuscated structure that *computerization needed – making the
overall process significantly harder. Hence, in bCLEARer we
see *ontologization as primarily a process for refining already
*computerized data.

V. BCLEARER’S BROAD STRUCTURE

The bCLEARer process has been modularized (see [53, App.
B], [54]) into a component architectural pattern. We describe this
in the first section.

In the earlier comparison of current methodologies, we
assessed them relative to two levels: generalization and
digitalization. We now describe how bCLEARer addresses these
levels in the second and third sections below. In the final, fourth,
section we look at whether it is better to surface-*computerize
(using bCLEARer) in vitro or in vivo.

1) bCLEARer’s Pipeline Component Architecture

Framework
The bCLEARer process has a pipeline (pipe-and-filter)

architecture [54], a prevalent approach for data transformation.
This architecture consists of a sequence of processing
components, arranged so that the output of each component is
the input of the next one creating a ‘flow’. The pipeline
architecture has, as the 'pipe-and-filter' name suggests, a series
of pipe and filter components, where pipes pass data to and from
filters that transform the data — the pipeline flow. The
architecture can be nested, in that filters can encapsulate a sub-
pipeline process.

This generic architectural pattern is refined into a more
constrained pattern for bCLEARer’s more specific needs. It
must include the components of the ontologization process in a
structure where the specific arrangement of components can be
dictated by the needs of the project and this arrangement can
flexibly evolve over time, potentially into a radically different
shape.

Typically, it is divided into three broad levels:

1. thin slices – which typically correspond to ways of

dividing the domain and the dataset [55]

2. bCLEARer stages – the stages that correspond to a

particular type of transformation

3. bUnits level – the filters within a single bCLEARer

stage, the base filters are called bUnits.

a) The bCLEARer stage types

While the contents of the individual thin slices and bUnits
level vary from project to project depending upon their needs, as
well as evolving over time, the bCLEARer stage types are a
more stable architectural feature. The design of these types is
motivated by the ‘separation of concerns’ [21] principle – where
each type deals with a different kind of transformation. This
builds upon the factorization discussed above. The five stage
types are Collect, Load, Evolve, Assimilate and Reuse (whose
initials contribute to the acronym bCLEARer).

Collect is the stage at which a dataset enters the pipeline.
Collect stores the dataset and ensures it is not changed. There is
no transformation at this stage. This provides a fixed baseline for
tracking. Larger datasets are divided into chunks, to be
consumed one chunk at a time.

The Load stage receives the dataset from the Collect stage.
The first thing it does is establish the identity of the contents to
facilitate tracking and tracing. The Load stage is responsible for
ensuring that the data passed onto the next Evolve stage is
*computerized – at least surface-*computerized. If the dataset
comes from an operational application system that uses an
enterprise database, the data will probably be sufficiently
structured and so need no *computerization transformation. If it
is unstructured text, for example a PDF text document, it will be
pre-*computerized, and so need transforming. The Load stage
undertakes the minimal amount of transformation to
*computerize it, in effect it surface-*computerizes it. Where this
is required, the project will need to decide on the output format
to use. In our projects, we usually make the target structure
simple tables.

The Evolve stage assumes its input data is (at least) surface-
*computerized. It is responsible for digitalizing this input data.
This is done in two major sub-stages. First it deep-*computerizes
the data and then *ontologizes it. Typically, the very first
exercise in the deep-*computerize stage is to check whether the
data needs cleaning, and if so, clean it. When the data comes
from several systems, it normally makes sense as part of the
deep-*computerization stage to integrate the data across systems
into a common format, as far as possible, after firstly
transforming the data from each system on its own. When the
deep-*computerization is complete, the *ontologization can
start. This is guided by a minimal foundation, the BORO Seed –
for an example of a relatively recent minimal seed see Top-Level
Categories [56]. A full digitalization project will include both
*computerization and *ontologization. But pragmatic
considerations may dictate that this is done in phases – and the
early phases may only go so far along the digitalization journey.
For example, undertaking deep-*computerization and delaying
*ontologization to a later stage.

The Assimilate stage assumes its input data is ‘evolved’ – so
both locally *computerized and *ontologized. It is responsible
for assimilating this into a common cross-project model. The
assimilated model is then ready for use in future Assimilate
stages.

The Reuse stage assumes its input data is assimilated. It is
responsible for translating this data back into a format usable by
the targeted operational systems.

b) Managing micro-coevolution

To some extent, the discussions about factorization and
components shift focus away from the micro-coevolution that
takes place. The bCLEARer journey typically involves
evolutionary adaptations simultaneously on two fronts:

• Information Evolution: Adaptation of information

throughout its journey.

• Journey Evolution: Adaptation of the journey itself to

emerging requirements, accelerating the information's

evolution.

The whole process supports both these adaptations:
identifying and accommodating significant changes in both the
information and its digital journey. A key element is adaptive
resilience: maintaining stability and efficiency of the
factorization and components amidst continuous change.

2) A bCLEARer example
A concrete example of how *computerization and

*ontologization are deployed in the first three bCLEARer stages
might help to make some of these points clearer. Let us say we
have a legacy migration project that encompasses intercompany
accounting systems. We have three source systems: PHAS (Peak
Holdings Accounting System) from Peak Holdings Ltd, AAS
(Acme Accounting System) from Acme Ltd and ZAS (Zenith
Accounting System) from Zenith Inc., where the latter two
companies are owned by Peak Holdings. For simplicity, assume
all three systems are being migrated to a new COTS system –
NAS (New Accounting System). Assume there is also a desire
to take this opportunity to harmonize the accounting practices
across the three systems. Using bCLEARer provides a
systematic approach to not only integrating the data but also
exposing digitalization opportunities.

a) Collect stage

The Collect stage will initially take a snapshot of the full
dataset from the systems for the initial development of the
pipeline. Later snapshots will be taken as required. As these
datasets come from operational systems, they have a holistic
coherence and consistency that we need to make sure persists
through the bCLEARer process.

a) Load stage

For simplicity, assume the PHAS, AAS and ZAS systems all
use relational databases. The datasets are already surface-
*computerized so there are only a few further specific
*computerization tasks needed at this stage. The first task in
bCLEARer Load is always to mark the identity of the data, to
provide a baseline for tracking and tracing. We give the systems,
tables, columns and rows identities – and, where necessary, the
cells as well. This is typically done with a cryptographic hash
function.

We also identify and inherit from the source systems the
queries that can be used to check for coherence and consistency.
These would include standard reports such as, in this case, the

account ledger, balance sheet and profit and loss reports. We
typically run and hash the figures in the reports so we can easily
run a simple automated binary comparison check.

a) Early Evolve stage – *deep-computerization

The early Evolve *deep-computerization stage is approached
with an ethnographic mindset, interpreting and understanding
the dataset’s implicit structure from its own perspective – aiming
not to introduce any biases. This opens the possibility for a
multiplicity of syntactic changes (adaptations) – data cleansing
being one type.

b) Early Evolve design pattern – unification of types

The Evolve stage focuses on deep-*computerized. We have
developed a range of design patterns to facilitate this stage. One
useful design pattern simplifies the handling of data formats.
There is no restriction of the format in which the dataset comes
in at the Collect stage. It could be in XML, JSON or SQL or a
combination of these or other formats.

However, for the ontologization process these specific
implementation data formats are an irrelevancy so can be filtered
out. The higher levels of (syntactic) generality, the metadata and
schema can be mapped into the data, which removes the
dependency on any specific implemented format. We call this
mapping the unification of types [37], [57]. This enables us to
choose for this stretch of the pipeline a data format that suits the
work we want to do – and build common code for this. It also
greatly simplifies making the metadata explicit – as what was
built implicitly into the collect data form can now be made
explicit.

In the case of the three systems, which use relational
databases, the tables and columns are shifted into the data –
unifying the schema and the data. At the same time, the balance
sheet, profit and loss and other queries are adapted to the unified
data structures and used to test the relevant semantics are
preserved. There is no gap between the migration to the unified
structures and testing with the queries.

When we have unified the types, we have standard tools to
graph-visualize the data. We do this at each major stage along
the pipeline. We have found (and it is well-recognized) that it is
a good way to handle large quantities of data.

a) Early Evolve stage – syntactic integration

Typically, different systems implement what is clearly the
same information in different structures, sometimes very
different structures. This creates opportunities for syntactic
integration. For example, the format for the chart of accounts and
postings is likely to vary between the three systems. At this
stage, we take the opportunity to make simple changes that
harmonize the information in the three systems, taking care to
respect the perspective of the individual systems.

a) Later Evolve design pattern – *ontologization

Once the opportunities for deep*computerization have been
exhausted, if appropriate we move to the later Evolve stage and
start the *ontologization. However, there may well be situations
where it makes sense to delay this until some future project.

*Ontologization typically involves making semantic
adaptations. We have *ontologized accounting systems before

and seen the kind of semantic adaptations that emerge, see [58],
[59], [60], [61], [62]. One adaptation these identify – see [62] –
is the shift from de se perspectival accounting to de re ’objective’
accounting. We would expect this adaptation to emerge here as
well.

The way it would emerge is as follows. The top ontology
would provide criteria for identity. When these are applied to
individual intercompany transactions, this will provide the basis
for recognizing where transaction and accounts are the same.
However, under current accounting conventions these will be
marked with opposing debit and credit properties. Transactions
and account balances that are marked in one system as debits
will be marked as credit in the other system. It turns out that
whether these are tagged as debit or credit is subjective and
depends upon which company’s perspective is taken. One then
recognizes debit and credit as a relational property between the
transaction and the company.

In more practical terms, it means that the form of the data is
changed. All the identical original accounts and transactions are
merged into new ones – and a debit/credit relation between the
company and them are established. These changes start in the
data and are propagated into the schema. At the same time, the
queries are amended (evolved) to take account of the new
structure – and tested to ensure they can reproduce the figures in
the original reports. They both confirm the consistency of the
new structure and help to ensure the adaptation is preserved
along the pipeline. One can recognize this as an empirical
exercise where the changes emerge from the data. It is hard to
see how rational inspection of the schema without consideration
of the data could lead to this adaptation.

3) bCLEARer’s level of generality approach
We introduced the broad division of information from a data

perspective into these levels of generality: the metadata, schema
and data levels. We can use this to classify the methodologies’
information pathways and so clearly differentiate the
methodologies.

a) Scoping level of generality

We can see differences in the ‘generality’ scope of the
methodologies’ information pathways. As shown in Fig. 2, the
mainstream ‘ask-an-expert’ (AaE) and ‘top-down-classification’
(TDC) methodologies differ in that AaE scopes the metadata
level out and TDC scopes it in. The two mainstream
methodologies differ from bCLEARer in their scoping of data.
The two mainstream methodologies scope the data level out and
TDC scopes it in.

Fig. 2. Methodology information pathway – levels of generality

This descoping is reflected in the standard ISO 21838-1
where a domain ontology is defined in section 3.18 thus:
“ontology (3.14) whose terms (3.7) represent classes (3.2) or
types and, optionally, certain particulars (3.3) (called
distinguished individuals‘) in some domain (3.17)” – and later
says “Some ontologies also allow terms representing certain
privileged particulars (referred to as ‘distinguished individuals’),
such as ‘the actual world’, ‘spacetime’, or (in an ontology of US
law) ‘the US Supreme Court’”. The standard recognizes that the
domain includes particulars, as it is defined in section 3.17 thus:
“collection of entities (3.1) of interest to a certain community or
discipline” with a note to say “‘Entities of interest’ can include
both particulars and classes or types.” The standard assumes
(without explanation) that unless something is a special
‘distinguished’ particular, it is excluded from domain
ontologies.

This radical descoping approach would make sense if one
somehow could acquire a high degree of confidence that the
rationally designed schema structures would adequately support
the requirements of the domain data. In software engineering, it
is well-recognized that we do not have the tools to provide this
confidence, that one needs to empirically test the schema with
data to acquire a sufficient degree of confidence. So, the radical
descoping of data effectively eliminates any direct testing of
schema patterns that involve data – in other words empirical
testing.

Historically, projects have typically built in a delay between
the rational design and the empirical testing. One can see this
clearly in waterfall-stye software development, where
significant data has historically only been introduced into the
project for volume testing.

However, the more one delays including sufficient
significant data in scope, the greater the gap between the
introduction of a defect and the possibility of finding and fixing
it and the more difficult and expensive it becomes to fix. Hence
the development of methodologies such as Extreme
Programming [63] that aim to identify defects early. And the
emergence of discussion of a shift left approach [64], where
testing is performed earlier in the lifecycle. More recently,
DevOps has embraced this approach.

Delaying the testing may once have been a justified
pragmatic choice. Typically, in most systems there is far more
data than schema – and more schema than metadata. So, an
initial descoping of data will usually have the effect of
significantly reducing the size of the dataset, making it feasible
to manage with existing technology. In the last decades of the
20th century, there may have been good technological reasons
for working this way, but this is no longer the case.

The bCLEARer approach is fundamentally empirical. It
expects the design patterns to emerge from the data. Design
patterns are described in terms of the data that exemplifies them.
Hence there is literally no gap between design and testing – they
are the same process.

b) Top-level ontology deployment

There is an element of ambiguity about the metadata level
that becomes clear when we consider bCLEARer. In the ‘top-
down-classification’ and ‘ask-an-expert’ approaches the main

information pathway starts with unstructured data, which has no
top-level metadata (though it may have provenance ‘metadata’).
In the ‘top-down-classification’ approach the top-level metadata
is a previously prepared top-level ontology.

When bCLEARer is processing a structured dataset, this will
have top-level metadata – the structure of the data into, for
example, tables, columns and rows. During the deep-
*computerization stage, this will be made explicit, where it is not
already. At this stage one works with the data rather like an
ethnographer working within a culture – aiming to make its
implicit, invisible assumptions explicit without imposing one’s
own views, especially on the nature of the domain.

At the *ontologization stage, the situation is different. The
ontological commitments are usually far from clear and often the
top-level commitments completely inscrutable. bCLEARer gets
around this by introducing a top-level, but it does not want to let
this interfere with the underlying picture of the domain. So,
bCLEARer aims for a balance where the top-level is sufficiently
ontologically rich and complex to guide the analysis effectively,
but also sufficiently minimal that it does not hinder, or block
refinements emerging from the bottom (data) or otherwise
render the validation ineffective. One aims to seed the process
with a top-level that is sufficient to make the ontological
foundations, and so the ontological commitments, scrutable.
This could then guide the *ontologization. One also aims to
make this as minimal as possible to maximize the benefits of
bottom-up grounding. To be as open as possible to refinement as
the lower-level ontological commitments emerge from and are
confirmed in the data. For a discussion of how to construct a
minimal seed see Top-Level Categories [56].

4) Navigating levels of digitalization – the information

pathway
As the two methodologies we looked at earlier show, an

ontologization process will have an information pathway that
navigates the levels of digitalization. How should one design this
navigation?

a) Shifting digitalization right or left

One can characterize this pathway in terms of whether the
transformation to *computerization (from unstructured to
structured data) is performed earlier or later in the lifecycle (that
is moved left or right on the project timeline). Fig. 3 shows us
this for the three methodologies we are looking at.

Fig. 3. Methodologies – Levels of digitalization

The ‘ask-an-expert’ (AaE) and ‘top-down-classification’
(TDC) approaches, looked at earlier, shift right. They move the
transformation to *computerization towards the end of the
project lifecycle (and *ontologize at the same time, without
intermediate steps).

Data pipeline approaches, such as bCLEARer, shift left.
They aim to make the information pathway transformation to
*computerization as early as possible. The ideal case is when the
collected dataset is already structured so already *computerized.

What motivates this position is the aim to be in a situation
where the data pipeline can run automatically, getting into
‘machines talking to machines’ territory as soon as possible. One
only needs surface-*computability, not deep-*computability.
Hence, one gets all the benefits of automation as early as
possible.

b) Example – definitions as a marker of digitalization

maturity – shifted right or left

A good marker of the level of digitalization of an approach
is how it handles natural language definitions for humans. The
level of maturity of this process is a good guide to the overall
level of digitalization.

[3] is a good example of a common practice. It has 8 pages
(pp. 68-76) and the same number of principles (13-20) devoted
to how to write (in natural language) definitions properly. The
first principle (13) states: “Provide all nonroot terms with
definitions.”

From an information pathway perspective, the information is
assembled in a human brain and translated into natural language
text. Then it is (hopefully) used as an input to a later manual
formalization: as the text is not computer readable. Also
(hopefully) when the formalization changes, then effort is made
to manually bring the natural language text in line. This effort is
manual, so is prone to error and does not scale. Clearly, this
process is at a pre-*computerization level of digitalization.

Stafford Beer [65] said, “the purpose of a system is what it
does” (converted into the acronym POSIWID) and, to drive the
point home it has been observed that there is no point in claiming
that the purpose of a system is to do what it constantly fails to
do. The same point applies, more narrowly, to a computer
system’s use of a term. If the system (somehow) uses the term in
a certain way, then that is surely what the term ‘means’ to the
system. If one writes the code for the system in a ‘clean’ way
[50], we can algorithmically translate the way it uses the term
from the machine language of the system into something human
readable. Surely this ‘definition’ with its direct connection with
what the system actually does is far more trustworthy than
something produced by humans on behalf of the system. And we
can also trust that as the system evolves and changes, this
‘definition’ will change with it.

Hence, bCLEARer-type approaches aim to clean the data in
the pipeline so that the natural language definitions can be
algorithmically extracted directly. From an information pathway
perspective, all the definitional work is automated, predicated
upon at least cleaning the data. This avoids all the manual effort
that would have been devoted to these definitions. Clearly, this

process is at least at a *computerization level of digitalization,
and at an *ontologization level if one needs better output.

5) Digitalization – surface-*computerization – in vivo

versus in vitro
Directed evolution introduces an in vitro mimicry of in vivo

evolution. This raises a natural question about what factors affect
the choice between these two approaches. Obviously, a big
factor is how successfully one can target good adaptations.

Given that we have operational enterprise systems, then it is
plain that in vivo evolution can produce working computer
systems (so surface-*computerized data). There is also lots of
evidence of failed projects, so we know that it is not easy.

When we have these systems, the problems of dirty data are
well known. If one looks, in any detail, at the data innards of
successful enterprise operational systems it is surprising how
well they work given how ‘dirty’ and disorganized they are. Data
cleansing exercises show how relatively easy it is to improve
them. This suggests that one can target good adaptations for the
deep-*computerization process. bCLEARer’s experience agrees
with this.

When one works with these systems, it soon becomes clear
that most have little or no clear ontological commitment. One
simple test is to see how the system handles mereology – it is
rare to find a system that has a clear picture of this. Similarly for
multi-level types [22]. bCLEARer’s experience suggests that if
done properly then building in a clear ontological commitment
is feasible and can reap significant benefits.

Together these suggest that one can target good adaptations
for deep-*computerization and *ontologization provided one
has the surface-*computerized data. It also suggests that in vivo
natural selection is not so good at finding these adaptations, at
least in the timescale these systems have had to evolve.

From a more general perspective, this suggests that the role
of ontologization is not to facilitate the first step in digitalization
– surface-*computerization, but more to enable a second step
that significantly improves systems.

a) Experienced systems

It is normal to think of computer system quality degrading
over time, that as systems get older, they accumulate technical
debt and the quality of their data declines. It may well be true
that, as the amount of data in a system grows, the amount of
erroneous data items also grows. But this misses an important
point from our perspective, that systems accumulate a kind of
experience over time. Typically, both the variety and complexity
of their data increases and it becomes a better reflection of the
domain. This reflects the enormous investment in both the
operation and maintenance of the system.

From the bCLEARer-type data pipeline perspective this
‘experience’ is valuable. As Ashby’s discussion [66] of variety
makes clear the richness and complexity of the picture we build
of the domain will depend upon the richness and complexity (the
variety) of the data we use to build it.

From one perspective, this is a classical evolutionary
situation. A biological unit (in this case, a computer system)
garners information about its world that is useful to it. Unless

this information is heritable, and inherited, then it stops being
useful when the unit dies. Genetic inheritance is a very lossy way
of transmitting information. Pipelines like bCLEARer offer the
prospect of salvaging significant portions of the data.

From another, breeding perspective, it suggests a rule of
thumb. Given that we aim to harvest domain patterns from the
digitalization exercise, then if we select more experienced
operational systems – and several of them – then we will harvest
richer more accurate patterns.

b) Harvesting pre-*computerization

There is a flip side to this. What should we do in cases where
there is not even an operational system, let alone an experienced
one. We can deploy ontologization processes on pre-existing
unstructured data or even synthesize unstructured data. The
synthesized data will not have been subjected to any real
selection pressures. The unstructured data may have been
subject to some selection pressures, but these will not shape its
formal structure (as it is unstructured). In these cases, there
seems to be a lack of variety, or at least the right kind of variety.

A rationalist might think armchair reflection will be able to
provide requisite variety. But this will be rooted in brain
wetware, speech and writing – all legacy technologies from a
computing perspective. Is this good enough to target good,
computerized adaptations? There is a lack of data on this topic,
but our anecdotal evidence is that it falls well short of what is
required. That without the computer experience to build upon,
our targeting falls back on legacy technology patterns of thought
that prove unsuitable for the scale and formal precision of
computerization.

VI. SITUATING DATA PIPELINES AS EVOLUTION

One can see the goal of a bCLEARer-type data pipeline
project is to build an in vitro high evolvability environment for
information, providing it with the possibility of evolving fast.
This environment is easier to build when one develops a
sensitivity to the complex set of drivers that the evolutionary
perspective reveals.

The evolutionary perspective is an incredibly rich resource,
and we are still in the process of understanding how the
digitalization process fits into it. However, there are several
elements of the perspective that we have found useful, and we
outline a few of these in this section to provide a sense of what
the perspective entails.

1) Data pipelines as directed or experimental evolution
From an evolutionary perspective, the bCLEARer-type data

pipeline methodology can be seen as a kind of directed [67] (or
experimental [68]) evolution – where experimental evolution is
sometimes called “laboratory natural selection”.

Direct evolution is used in protein engineering – and
contrasted with rational design, which targets specific point
mutations. However, from a broader perspective, the range goes
from random natural mutation to deterministic rational design
with directed evolution somewhere in the middle. But the rate of
natural mutation is usually insufficient for generating the genetic
diversity required for laboratory directed evolution, so it is out
of scope. Directed evolution balances the difficulty of
‘rationally’ accurately predicting how specific mutations will

impact protein function with the slow and unpredictable pace of
natural selection. It uses targeting but reduces the need for
accurate predictions replacing by iteratively selecting mutations
and ‘empirically’ testing them.

In the digitalization context, rational design would be
attempting to build the ontologization from first principles,
whereas the directed evolution would start with the existing data
and target a range of likely mutations and iterative tests which
lead to better adaptations. In a process broadly analogous to
directed and experimental evolution, it repeatedly targets and
constructs variants in an iterative step-by-step process,
continually inspecting the results and selecting for fitness,
aiming to mimic natural selection.

This evolution is directed in the sense that there is an element
of Lamarckian target setting when managing the mutations,
which, when successful, speeds up the evolution. The direction
cultivates and nurtures evolution – focusing on fostering and
guiding innovation – rather than purely analyzing or breaking
down data. The aim is to guide the selected dataset (of
information) along a journey of digitalization transformation
that exploits the opportunities offered by digital technology.
More specifically, to exploit the opportunities for
*computerization and *ontologization of information.

2) Data pipelines as evolving information transmission
Inheritance involves the transmission of information

between individuals. Genetic heredity involves passing
information from one generation to the next – often called
vertical transmission. Sexual reproduction is an example of
vertical transmission – transmission from parents to their
offspring.

If, as suggested earlier, we see computer systems as
biological individuals, then within digitalization, legacy system
replacement can be seen as a good example of vertical
transmission, where the data (information) in the legacy system
is transmitted to the new system.

A bCLEARer-type data pipeline works at the level of
information transmission – in other words, transmission between
systems. If deployed in the legacy system replacement case, it
would take control of the transmission of information from the
legacy to the new system. So, the pipeline can be seen as an
example of digitalization information transmission, with a focus
on developing adaptations during transmission between
computers.

Developing adaptations during information transmission is
not new to evolution. In natural evolution mechanisms for
creating adaptations during information transmission have
arisen, sexual reproduction being a classic example. The genetic
recombination of genetic material from two parents can
introduce novel variation.

bCLEARer-type data pipelines are designed for fast
evolution. For good empirical reasons, biological experimental
evolution, mentioned above, will often adopt a life span speed
strategy. It will select individuals, such as fruit flies, with a short
life span, to enable testing to occur over multiple generations and
so speed up evolution. However, this strategy of shortening life
spans and increasing the number of generations makes less sense
in the pipeline case, where (among other things) there is not a

plethora of systems with short lifespans. However, the general
strategy of increasing the pace of evolution stands. pipeline
achieves this through both extending and enriching the
information transmission process as well as iterating it –
mimicking the evolution of multiple generations within a single
transmission.

3) Challenge – uncertainty, contingency and chance
The uncertainties around innovation are well-known [69].

One way these uncertainties are framed in evolution is as
contingency [70], [71], This recognizes that evolution is a
historical process and so is sensitive to and so contingent upon,
the paths taken in its journey – in other words, sensitive to
chance.

In general, the potential for innovation is usually so wide-
ranging, so subject to chance that it makes no real sense to ask
whether an opportunity has been missed. However, in the
restricted digitalization context, we are designing systematic
processes that more regularly lead to innovations and so making
adaptations significantly less subject chance. In this situation, it
makes sense to ask whether we are missing innovation
opportunities that we could (should?) have spotted.

a) Macro- and micro-evolutionary contingency

To illustrate evolutionary contingency, Stephen Jay Gould
[72] used the thought experiment of rewinding the “tape of life”
to the distant past. He argued that even small changes to the path
of history could result in evolutionary outcomes very different
from our world, such as, for example, no humanity.

For our purposes, we can usefully distinguish between
broadly global macro-contingency and local micro-contingency.
Where global macro-contingency is whether a particular major
outcome will ever (globally) happen – for example, humanity or
language or computers emerging. And local micro-contingency
is whether a particular minor outcome that could happen will do
so in a local situation. We see micro-evolutionary contingency
when different similar beetle populations respond differently to
the same pressures – such as climate change.

b) Evolutionary data pipeline contingency

We can translate macro- and micro-evolutionary challenges
to our bCLEARer-type data pipeline digitalization context.

At the macro-evolutionary level, we recognize that it is not
inevitable that humanity will exploit the major opportunities of
digital technology. We have already noted that the exploitation
of technology depends upon the appropriate co-evolution of
technology and cultural practices. And that the evolution of the
cultural practices depends, at least in part, upon the appropriate
Lamarckian targeting. If this doesn’t happen, the innovation
opportunity will be missed. The (broadly) global question asks
whether it will happen in our (near) future.

The concern is not entirely theoretical as we have examples
from the past. Olson [33] also describes how Western European
culture successfully evolved to take advantage of printing
technology when cultures in other parts of the globe (such as
China) did not, even though they had earlier access to the
technology. This provides us with a good illustration that
technological innovations need cultural variations that will
successfully exploit selection pressures, that these evolutionary

pathways are contingent upon taking (targeting and
construction) a potentially successful direction.

Pragmatically, contingency concerns are about completeness
– about how exhaustive the process is. At the macro level, the
goal is to design a framework whose use is likely to maximize
the chances of finding and exploiting the general opportunities,
particularly the most fruitful opportunities, for *computerized
and *ontologized digitalization. At the micro level, the goal is to
design a pipeline using the framework whose operation is likely
to maximize the chances of finding and exploiting the specific
opportunities. At both levels, the aim is to minimize the risk of
overlooking valuable opportunities.

bCLEARer is an example of such a framework at both the
macro- and micro-levels. It is designed as a tool to systematically
find and exploit opportunities for *computerized and
*ontologized digitalization.

4) Data pipelines as in vitro evolution
If one restricts one’s perspective to bCLEARer-type data

pipelines, then most of the process is (in a sense) in vitro – in a
walled garden outside the original system. However, if one steps
back the pipeline usually plays a role in a wider live in vivo
ecosystem.

Also, there are usually important (in a sense) in vivo tests
where the information is returned to at least one operational
system and tested ‘in the wild’. If possible, this is to both the
original and similar systems. In an ideal configuration of the
pipeline, the improvements are fed back into the original system
on an ongoing basis and the results inspected.

VII. OUTLIER DESIGN CHOICES

In bCLEARer-type data pipeline information transmission
there are two evolutionary processes each with their own
information pathway. There is the information being processed
by the pipeline and then there is the pipeline process itself – as
code. Both are co-evolving intertwined in a process of reciprocal
causation – each feeding of the other.

The information being processed by the pipeline is the full
data set, with no level of generality being excluded. The pipeline
process is as automated as possible, so its information pathway
as *computerized as possible – in other words, is digitalization
shifted left as far as possible. Both these are outlier design
choices. In this section we look at ways of explaining aspects of
these outlier choices.

1) Should transmission include data inheritance
There is a further refinement of the evolving information

transmission narrative related to the role data plays in it. In the
methodologies we have been looking at, under the level of
generality accessibility perspective, one can choose whether to
include data (the lowest level of generality) in the ontologization
process. Simplifying a little, the ‘ask-an-expert’ and ‘top-down-
classification’ methodologies exclude data, a bCLEARer-type
data pipeline methodology includes it from the start. (The
simplification is that the metadata-data-schema classification is
about the syntax of the implementation, whereas generality is a
semantic matter. However, there is good enough rough match
between syntax and semantics here to make the point fair.) This
is an all or nothing choice. Unlike in software development

methodologies, especially waterfall, where the full dataset is
included in the process part of the way through – typically
towards the end. Hence, we label this as an architectural design
choice on whether to shift (far) left or (far) right.

a) Weismann’s distinction

One can get a sense of this architectural design question from
a distinction make in 19th century evolution theory. Weismann
[73] turned the point that the mechanisms of transmission
typically can only transmit some information in the source into
a distinction. He made a basic (since refined) division of cells
into the germline and the somatic line which gives us a neat,
simplified picture of the underlying structure. These are similar
to the The Selfish Gene’s [36] “replicators” and “vehicles”.

The germline is those cells that are involved in reproduction
and the transmission of genetic information from one generation
to the next. Mutations in the germline are crucial for evolution
because they can be passed to the next generation, in other
words, they are heritable.

The somatic line is the rest of the cells, the non-reproductive
cells. They are not involved in the same way in transmission.
Mutations in these cells may affect the individual and so their
fitness, but are not transmitted on to offspring, so they are non-
hereditary.

The germline cells have been called ‘immortal’ in the sense
that they (or their genes) continue to exist indefinitely through
reproduction – creating a lineage. Whereas the individuals and
their somatic line cells die, they are mortal. Thus, changes in the
germline can contribute to genetic diversity and evolutionary
adaptation, while changes in somatic cells affect only the
individual organism's health or fitness.

If one maps Weismann into the world of computer systems,
then there is a recurring pattern of transmissions where the data-
schema division aligns with the germ-somatic line division,
where data is heritable, and schema is not.

One clear example is the migrations between COTS systems
which have an analogous structure to vertical genetic
transmission. The data is migrated (transmitted) from the old
application to the new application – and so is immortal in the
sense it persists between generations. The schema (and the rest
of the application) is like the somatic line in that it ‘dies’ with
the old application. APIs (Application Programming Interfaces)
also have an analogous transmission structure. The data is
transmitted between applications whereas the schema is not.

This data-immortal, schema-mortal picture is, like
Weismann’s, a simplification. But it is broadly true in that the
data persists much longer than the schema – though as it moves
between applications it gets mapped to the new applications
schema.

We can frame this in economic terms. If we think of a
biological unit (whether organic or silicon computer application)
as storing information as an investment, one which ‘pays’ a
return when used. Then information transmission can be seen as
a way of preserving that investment across units to generate
better ‘returns. When this insight is combined with the
realization that in many current transmissions data is transmitted

and schema is not, then data would seem to be a better place to
invest in the information system ecosystem.

2) Data as embodied competencies
The use of competency questions is a rationalist approach.

At its simplest, it assumes that we have sufficient knowledge to
unaided target competencies that we require and then construct
a computer system with the competencies.

bCLEARer-type data pipelines are examples of an empirical
approach. They start with source operational systems that we can
verify have a certain level of competence. The datasets from
these systems embody these competences. They must do,
otherwise the systems would not operate. One can make these
competencies explicit, exhibit them, through queries on the
datasets – ones which are often already built into the source
systems.

Over time, the data structures in computer systems are
twisted and turned to accommodate new requirements. Hence,
there is an understandable feeling that the structures are
somehow defiled, unclean. While it is probably true that the lack
of cleanliness holds back some level of competency, it is not true
that it indicates a (total) lack of competency. The computer
systems operate, often at a sophisticated level, they still have the
competencies. The *ontologization stage of the digitalization
process addresses this lack of cleanliness providing a hyper
hygienic level of cleanliness that lets new competencies emerge.

3) Managing the inheritance – preserving and improving

the investment
If one shifts right and includes data in the process, then one

is faced with a responsibility for managing that data.

a) Transmission fidelity and transformations

Transmission fidelity ensures that the transmitted
information maintains its original shape and characteristics
throughout the transmission. In genetic (DNA) inheritance a
reasonably high transmission fidelity is needed to maintain
organismal stability across the generations. But mutations, a
failure of fidelity, are the variations that provide the raw material
for evolution. So, if we want adaptation and natural selection to
occur we need to ensure we have mutation and so variation.

In the pipeline, the formal nature of digital computing means
fidelity works in a different way. Though there is some
degradation of the digital signal in some circumstances, this is
not significant. So, we can pragmatically assume digital fidelity.
We still need new variations, but these are formally created by
the pipeline code.

DevOps recognizes the importance of pipeline observability
engineering [74]. The term is borrowed from control theory,
where the "observability" of a system measures how well its
state can be determined from its outputs. Majors et al. [74]
suggests that what differentiates observability is its focus on not
just identifying issues but aiming to minimize the amount of
prior knowledge needed to resolve an issue. This has,
historically, been a significant driver for bCLEARer where
significant time used to be lost attempting to track and trace
adaptations along the information pathway. Where tracking
follows information, and tracing follows how information has
influenced other information. This has led to the bCLEARer

pipeline introducing an additional kind of observability – what
we call ‘inspectability’ – which is the ability to map in full detail
the transformation journey along the information pathway.

We have been working over the last few decades evolving an
inspectability framework. The specific goal of this inspectability
framework is to be able to track and trace the items of
information through the pipeline. This relies firstly on having a
clear notion of identity for these items. This means, ironically,
we needed to build an ontology for the information in the
pipeline. We need to be able to extend this ontology to give us a
clear notion of tracing – relating how items are transformed into
new items. We then needed to build infrastructure into the
pipeline to make this ontology explicit. Finally, we needed to
able to access this ontology at regular inspection gates and have
tools that allow us to view and visualize it.

With this in place we can track and trace information items
and their transformations through the pipeline, between pipeline
runs and between pipeline evolutions. One useful visualization
is the information items’ ontogenic tree – analogous to the
phylogenetic tree – showing how the information items
transform as they pass along the information pathway, as well as
how data and schema coevolve.

b) Automation and the dataset

Automation has improved the pace and scale of
digitalization’s directed evolution. It is well known that pace is
a key factor in being able to generate change in a reasonable
time. In evolutionary research the fruit fly has a key role due to
a very short life cycle, typically around 10 days from egg to
adult, leading to fast evolution. In innovation research,
Christensen (see The Innovator’s Dilemma [69]) picked the disk
drive industry because of its fast pace of change, referring to it
as the ‘fruit fly’ of the business world.

Pace is similarly important in ontologization pipelines. It has
a couple of aspects which we have already noted a few times.
The first and simplest is the pace of a single pipeline run – the
information evolution. This needs to be quick enough to allow
for frequent runs. The second is the pace of the evolution of the
transformations in the run in a project – the project process
evolution. The third is the pace of the evolution of the
transformations across projects – the process evolution.

A major impact on pace, as well as the investment required,
is the development of the pipeline code. An important way to
reduce costs was to evolve common code, where code is reused
rather than written anew from scratch. The aim is for much of
the final code to be common to multiple bCLEARer data
pipeline projects. There are opportunities to build common code
for the running of the pipeline. There are also opportunities to
evolve general patterns of transformation (and the components
of the transformations). One can see this as digitalizing the
transformations – where the transformations are carried out by
machines on machines. Using machines to build better machines
has a long history. One well-known episode is the use of John
"Iron-Mad" Wilkinson’s machine to precisely bore the large
cylinders needed for James Watt’s steam engines – significantly
improving efficiency over the previous manually crafted ones.

Achieving the goal of a common codebase requires the
adoption and coordination of multiple techniques. There are a

variety of software development hygienes that reduce the cost of
maintenance and enhancement such as clean coding [50]. There
is also the continuing evolution of design patterns facilitated by
a close analysis of the transformations.

VIII. CONCLUSION

We have used a two-dimensional analysis (over generality
and digitalization) to identify new data pipeline-based
opportunities for exploitation in the ontologization methodology
design space that are not exploited by current mainstream. From
a levels of generality perspective, there are opportunities to be
more inclusive with data from the start of the pipeline. From a
levels of digitalization perspective, there are opportunities to
shift the computerization of the process to the far left, to the start
of the pipeline. We have used bCLEARer as an example of how
this can be done.

We have noted that engineering of the ontologization process
is design poor and raised the need to remedy this. As part of this
remedy, we have factored the process into separate concerns.
Divided it firstly into *computerization and *ontologization and
then further divided *computerization into surface-
*computerization and deep-*computerization. We have
suggested that we should consciously design the order of these
processes.

Finally, we have called attention to the point made in many
fields, that setting the right context is critical to success. In this
field, we suggest that a fruitful context is information evolution.
We describe how this evolutionary perspective situates
digitalization as the latest iteration in the overall evolution of
information transmission. And then situates *computerization
and *ontologization as key cultural practices in digitalization’s
coevolution.

ACKNOWLEDGMENT

We wish to thank Mesbah Khan and Andreas Cola for their
helpful reviews of the paper.

REFERENCES

[1] ISO, ISO 21838-1:2019 - Information technology – Top-

Level Ontologies (TLO) – Part1: Requirements, 2019.

[2] N. Guarino and C. Welty, ‘Identity, unity, and

individuality: Towards a formal toolkit for ontological

analysis’, in Proceedings of the 14th European

Conference on Artificial Intelligence, Citeseer, 2000, pp.

219–223.

[3] R. Arp, B. Smith, and A. D. Spear, Building ontologies

with Basic Formal Ontology. Cambridge,

Massachusetts: Massachusetts Institute of Technology,

2015.

[4] C. Partridge, Business Objects: Re-Engineering for Re-

Use, 1st Edition. Oxford: Butterworth-Heinemann,

1996.

[5] S. de Cesare and C. Partridge, ‘BORO as a Foundation

to Enterprise Ontology’, Journal of Information

Systems, vol. 30, no. 2 (Summer 2016), Art. no. 2

(Summer 2016), 2016, doi: 10.2308/isys-51428.

[6] J. Mokyr, ‘The past and the future of innovation: Some

lessons from economic history’, Explorations in

Economic History, vol. 69, pp. 13–26, Jul. 2018, doi:

10.1016/j.eeh.2018.03.003.

[7] J. Mokyr, A culture of growth: the origins of the modern

economy. Princeton, NJ: Princeton University Press,

2017.

[8] W. E. Deming, The new economics: for industry,

government, education, 2. ed. Cambridge, Mass.: MIT

Press, 2000.

[9] J. M. Juran, Quality Control Handbook. New York:

McGraw-Hill, 1951.

[10] C. Dutilh Novaes, ‘The Formal and the Formalized: The

Cases of Syllogistic and Supposition Theory’, Kriterion,

vol. 56, no. 131, Art. no. 131, Jun. 2015,

[11] KBSI, ‘IDEF5 Method Report’, 1994.

[12] M. Uschold and M. King, ‘Towards a Methodology for

Building Ontologies’, 1995.

[13] M. Gruninger and M. S. Fox, ‘Methodology for the

Design and Evaluation of Ontologies’, in International

Joint Conference on Artificial Intelligence, 1995

[14] D. Jones, T. Bench-Capon, and P. Visser,

‘Methodologies for Ontology Development’, 1998.

[15] M. Fernández-López and A. Gómez-Pérez, ‘Overview

and analysis of methodologies for building ontologies’,

The Knowledge Engineering Review, vol. 17, no. 2, Art.

no. 2, Jun. 2002, doi: 10.1017/s0269888902000462.

[16] M. Cristani and R. Cuel, ‘A Survey on Ontology

Creation Methodologies’, 2005.

[17] R. Iqbal, M. A. A. Murad, A. Mustapha, and N. M.

Sharef, ‘An Analysis of Ontology Engineering

Methodologies: A Literature Review’, RJASET, vol. 6,

no. 16, Art. no. 16, Sep. 2013, doi:

10.19026/rjaset.6.3684.

[18] A. Fernández-Izquierdo, ‘Methodological framework

for ontology management’, OntoCommons, D4.2, 2021.

[Online]. Available:

https://zenodo.org/doi/10.5281/zenodo.10890089

[19] C. Partridge, ‘Digitalisation Levels’, Gemini Call,

Weekly meeting, 2021. [Online]. Available:

https://www.academia.edu/89132134

[20] C. Partridge, ‘How an Evolutionary Framework Can

Help Us To Understand What A Domain Ontology Is

(Or Should Be) And How To Build One’, presented at

the FOMI 2022, 12th International Workshop on Formal

Ontologies Meet Industry, 12-15 September 2022,

Tarbes, France, Sep. 12, 2022. [Online]. Available:

https://www.academia.edu/94453259

[21] E. W. Dijkstra, ‘On the role of scientific thought’, in

Selected Writings on Computing: A personal

Perspective. , New York, NY: Springer New York,

1982, pp. 60-66–362. doi: 10.1007/978-1-4612-5695-

3_12.

[22] C. Partridge et al., ‘Implicit requirements for ontological

multi-level types in the UNICLASS classification’, in

Proceedings of the 23rd ACM/IEEE International

Conference on Model Driven Engineering Languages

and Systems: Companion Proceedings, 2020, pp. 1–8.

[23] Aristotle, Nicomachean Ethics, 3rd ed. Hackett

Publishing, 2019.

[24] D. A. Schön, The Reflective Practitioner. Routledge,

2017. doi: 10.4324/9781315237473.

[25] T. Kelley and J. Littman, The art of innovation: lessons

in creativity from IDEO, America’s leading design firm.

London: Profile Books, 2004.

[26] P. M. Senge, The Fifth Discipline: The Art and Practice

of the Learning Organization, 1st ed. New York:

Doubleday/Currency, 1990.

[27] J. Maynard Smith and E. Szathmáry, The origins of life:

from the birth of life to the origin of language,

Reprinted. Oxford: Oxford Univ. Press, 2009.

[28] E. Szathmáry and J. M. Smith, ‘The major evolutionary

transitions’, Nature, vol. 374, no. 6519, Art. no. 6519,

Mar. 1995, doi: 10.1038/374227a0.

[29] J. Maynard Smith and E. Szathmáry, The major

transitions in evolution. Oxford: Oxford University

Press, 2010.

[30] E. Jablonka and M. J. Lamb, ‘The evolution of

information in the major transitions’, Journal of

Theoretical Biology, vol. 239, no. 2, Art. no. 2, Mar.

2006, doi: 10.1016/j.jtbi.2005.08.038.

[31] E. Jablonka and M. J. Lamb, Evolution in four

dimensions: genetic, epigenetic, behavioral, and

symbolic variation in the history of life. in Life and

mind. Cambridge, Mass: MIT Press, 2005.

[32] W. J. Ong, Orality and literacy: the technologizing of

the word. 1982.

[33] D. R. Olson, The World on Paper. 1994.

[34] M. A. Zeder, ‘Core questions in domestication

research’, Proc. Natl. Acad. Sci. U.S.A., vol. 112, no. 11,

Art. no. 11, Mar. 2015, doi: 10.1073/pnas.1501711112.

[35] G. Larson and D. Q. Fuller, ‘The Evolution of Animal

Domestication’, Annu. Rev. Ecol. Evol. Syst., vol. 45,

no. 1, Art. no. 1, Nov. 2014, doi: 10.1146/annurev-

ecolsys-110512-135813.

[36] R. Dawkins, The selfish gene. New York: Oxford

University Press, 1976.

[37] C. Partridge, ‘Why Form, and so Unification of Types,

is Important’, Workshop on the Unification of Types

and Multi-Level Modeling, 13 March 2024, London,

UK, Mar. 13, 2024.

[38] J. Dupré, Processes of Life: Essays in the Philosophy of

Biology. New York: Oxford University Press UK, 2011.

[39] T. Pradeu, ‘The many faces of biological individuality’,

Biol Philos, vol. 31, no. 6, Art. no. 6, Nov. 2016, doi:

10.1007/s10539-016-9553-z.

[40] A. Clark and D. J. Chalmers, ‘The Extended Mind’,

Analysis, vol. 58, no. 1, Art. no. 1, 1998, doi:

10.1093/analys/58.1.7.

[41] J. Van Heijenoort, Ed., ‘Begriffsschrift, a formula

language, modeled upon that of arithmetic, for pure

thought: GOTTLOB FREGE(1879)’, in Frege and

Gödel, Harvard University Press, 1970, pp. 1–82. doi:

10.4159/harvard.9780674864603.c2.

[42] R. Carnap, The Logical Structure of the World. Chicago

and La Salle, Ill.: Open Court, 1967.

[43] W. V. O. Quine, Word & Object. MIT Press, 1960.

[44] W. V. Quine, Ed., Theories and Things. Cambridge:

Harvard University Press, 1981.

[45] D. K. Lewis, On the plurality of worlds. Malden, Mass:

Blackwell Publishers, 1986.

[46] M. E. Porter, Competitive advantage: creating and

sustaining superior performance. New York: Free

Press : Collier Macmillan, 1985.

[47] P. Bricker, ‘Ontological Commitment’, in The Stanford

Encyclopedia of Philosophy, Winter 2016., E. N. Zalta,

Ed., Metaphysics Research Lab, Stanford University,

2016. [Online]. Available:

https://plato.stanford.edu/archives/win2016/entries/ontol

ogical-commitment/

[48] C. Partridge, ‘Why (and how) to use a metaphysicalist

foundational ontology’, 2015.

[49] M. Fowler and K. Beck, Refactoring: improving the

design of existing code, 28. printing. in The Addison-

Wesley object technology series. Boston: Addison-

Wesley, 2013.

[50] R. C. Martin, Clean code: a handbook of agile software

craftsmanship. Pearson Education, 2009.

[51] S. L. Star, ‘The Ethnography of Infrastructure’,

American Behavioral Scientist, vol. 43, no. 3, Art. no. 3,

Nov. 1999, doi: 10.1177/00027649921955326.

[52] G. C. Bowker, Science on the run: information

management and industrial geophysics at

Schlumberger, 1920-1940. in Inside technology.

Cambridge, Mass: MIT Press, 1994.

[53] C. Partridge, A. Mitchell, and P. Grenon, ‘A Framework

for Composition: A Step Towards a Foundation for

Assembly’, CDBB, Apr. 2021. doi:

10.17863/CAM.66459.

[54] D. Garlan and M. Shaw, ‘An Introduction to Software

Architecture’, in Series on Software Engineering and

Knowledge Engineering, vol. 2, 1993.

[55] C. Partridge, ‘Developing Thin Slices: An Introduction

to the Methodology for Developing the Foundation Data

Model and Reference Data Library of the Information

Management Framework’, (draft), Mar. 2022.

[56] C. Partridge, ‘Top-Level Categories: Categories for the

Top-Level Ontology of the Information Management

Framework’, 2022.

[57] C. Partridge, ‘Unification of Types and Multi-Level

Modeling: Introduction – IS’, presented at the King’s

College London, Workshop on the Unification of Types

and Multi-Level Modeling, 13 March 2024, London,

UK, Mar. 13, 2024. [Online]. Available:

https://www.academia.edu/116275287

[58] C. Partridge, ‘LADSEB-CNR - Technical report 23/02 -

A new foundation for accounting: Steps towards the

development of a reference ontology for accounting’,

The BORO Program, LADSEB CNR, Italy, 2002.

[59] C. Partridge, ‘Shifting the Ontological Foundations of

Accounting’s Conceptual Scheme’, in ECAIS 2003,

Sixth European Conference on Accounting Information

Systems, Seville: ECAIS 2003, Apr. 2003.

[60] C. Partridge, ‘Foundations of accounting: A paradigm

shift case study (Tutorial)’, in ONTOBRAS 2013,

Brazilian Conference on Ontologies, Belo Horizonte,

Brazil, Sep. 2013.

[61] C. Partridge, S. de Cesare, A. Mitchell, A. León, F.

Gailly, and M. Khan, ‘Ontology then Agentology: A

Finer Grained Framework for Enterprise Modelling’:, in

Proceedings of the 6th International Conference on

Model-Driven Engineering and Software Development,

Funchal, Madeira, Portugal: SCITEPRESS - Science

and Technology Publications, 2018, pp. 454–463.

[62] C. Partridge, M. Khan, S. de Cesare, F. Gailly, M.

Verdonck, and A. Mitchell, ‘Thoroughly Modern

Accounting: Shifting to a De Re Conceptual Pattern for

Debits and Credits’, in International Conference on

Conceptual Modeling (ER 2018), 2018,.

[63] K. Beck, Extreme Programming explained: embrace

Change, 9. print. in The XP Series. Boston, Mass.

Munich: Addison Wesley, 2003.

[64] L. Smith, ‘Shift-left testing’, Dr. Dobb’s Journal, vol.

26, no. 9, Art. no. 9, 2001.

[65] S. Beer, ‘What is cybernetics?’, Kybernetes, vol. 31, no.

2, Art. no. 2, Mar. 2002, doi:

10.1108/03684920210417283.

[66] W. R. Ashby, An introduction to cybernetics, 6. repr.

London: Chapman & Hall, 1979.

[67] L. Sellés Vidal, M. Isalan, J. T. Heap, and R. Ledesma-

Amaro, ‘A primer to directed evolution: current

methodologies and future directions’, RSC Chem. Biol.,

vol. 4, no. 4, Art. no. 4, 2023, doi:

10.1039/D2CB00231K.

[68] T. J. Kawecki, R. E. Lenski, D. Ebert, B. Hollis, I.

Olivieri, and M. C. Whitlock, ‘Experimental evolution’,

Trends in Ecology & Evolution, vol. 27, no. 10, Art. no.

10, Oct. 2012, doi: 10.1016/j.tree.2012.06.001.

[69] C. M. Christensen, The innovator’s dilemma: when new

technologies cause great firms to fail. Harvard Business

School Press, 1997.

[70] J. Beatty, ‘The evolutionary contingency thesis’, in

Concepts, Theories, and Rationality in the Biological

Sciences: The Second Pittsburgh-Konstanz Colloquium

in the Philosophy of Science, University of Pittsburgh,

October 1-4, 1993,.

[71] J. Beatty, ‘Chance and Natural Selection’, Philosophy of

Science, vol. 51, no. 2, Art. no. 2, 1984.

[72] S. J. Gould, Wonderful life: the Burgess shale and the

nature of history. New York London: W. W. Norton,

1989.

[73] A. Weismann, Essays upon heredity and kindred

biological problems. Oxford: Clarendon Press, 1889.

[74] C. Majors, L. Fong-Jones, and G. Miranda,

Observability engineering: achieving production

excellence, O’Reilly, 2022.

