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Abstract—Our aim in this paper is to outline how the design 

space for the ontologization process is broader than current 

practice would suggest. We point out that engineering processes as 

well as products need to be designed – and identify some 

components of the design. We investigate the possibility of 

designing a range of radically new practices implemented as data 

pipelines, providing examples of the new practices from our work 

over the last three decades with an outlier methodology, 

bCLEARer. We also suggest that setting an evolutionary context 

for ontologization helps one to better understand the nature of 

these new practices and provides the conceptual scaffolding that 

shapes fertile processes. Where this evolutionary perspective 

positions digitalization (the evolutionary emergence of computing 

technologies) as the latest step in a long evolutionary trail of 

information transitions. This reframes ontologization as a strategic 

tool for leveraging the emerging opportunities offered by 

digitalization. 
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I. INTRODUCTION 

In ontology engineering there is, in theory at the very least, a 
tight coupling between ontologies and ontologization, the 
process that produces them. Our aim in this paper is to suggest 
that the design space for the ontologization process is wider than 
a look at many of the current methodologies would indicate.  

To illustrate this at a general level, we partition the space 
along two dimensions: the levels of generality and digitalization.  
Fig. 1 shows how this partitioned space is currently exploited – 
with a focus on the early stages of the process – exposing the 
areas that are not being exploited. 

 

Fig. 1. Two-dimensional design space - exploitation 

This suggests that the space is broader than current practices 
would indicate. That it is possible to open the space up to a range 
of potentially radical, new practices based upon data pipelines. 
We hope that by outlining some of these practices here we will 
make the case for broadening the design space and encourage 
the community to adopt a wider range of practices. In large part, 
the evidence for this is derived from our work over the last three 
decades with an outlier methodology, bCLEARer, which 
provides a useful example of these data pipeline practices. 

We raise the engineering point that processes as well as 
products should be designed – and note a design poverty for 
formal ontologization processes relative to the final ontology 
products. We provide a factorization of the wider digitization 
process into which we believe formal ontologization fits. This 
separates computerization and ontologization concerns and we 
raise questions about how these components should be ordered. 

It is recognized that for foundational issues, setting the right 
context can have a bigger impact on success than the quality of 
the problem-solving processes. This is the case for 
ontologization which needs contextual scaffolding to provide the 
perspective that enables one to better understand the scope and 
nature of these new practices. Specifically, that one should see 
ontologization as an essential part of a much wider more 
pervasive phenomena, the latest information evolutionary step – 
digitalization (the emergence of computing technologies). From 
a short-term perspective, this recapitulates the relatively recent 
steps of printing and writing. From a long-term perspective, this 
fits into an evolutionary trail of information transitions that spans 
life on earth. Within such perspectives, ontologization can be 
understood as a tool for exploiting the emerging opportunities 
offered by digitalization. 

A. Structure of the paper 

In the next section, we provide a broad picture of the 
ontologization process and introduce two current mainstream 
ontologization methodologies to act as a baseline for 
comparisons. In the third section we introduce our example 
outlier data pipeline-based methodology, bCLEARer. In the 
fourth section we build the contextual scaffolding, firstly 
situating digitalization in an evolutionary perspective, then 
situating ontologization within digitization. In the fifth section, 
we situate bCLEARer in this evolutionary perspective. In the 
sixth section, we illustrate from within the evolutionary 
perspective some of the outlier design choices that bCLEARer 
has made.  



 

 

II. A BROAD PICTURE OF THE ONTOLOGIZATION PROCESS  

In ontology engineering one would expect a tight coupling 
between ontologies and ontologization, the process that 
produces them. One can characterize this as a product-process 
distinction, a fundamental concept in traditional engineering. 
The engineering mindset differentiates the product (the output) 
and the process (the method or system used to produce the 
output) and expects both to be engineered. And, as part of the 
engineering, to both be quality managed, hence quality 
assurance (process) and quality control (product). 

A. Top-level ontologies and ontologization 

In top-level ontology (engineering) work, the process is often 
an invisible relation of the product. An example of this is 
provided by the main standard, ISO 21838-1:2021 – Information 
technology: Top-level ontologies (TLO) – Requirements [1]. 
While this references the ontology of processes, the standard 
makes no mention of the ontologization process itself. Hence, 
unsurprisingly, the standards based upon it do not mention the 
ontologization process either. 

Some top-level ontologies have associated documentation 
for the ontologization process. The top-level Descriptive 
Ontology for Linguistic and Cognitive Engineering (DOLCE) 
has a related analysis tool OntoClean [2], but this falls far short 
of an ontologization process. The Basic Formal Ontology (BFO) 
has a book [3] on the ontologization process that assumes the 
BFO top-level ontology. We look at this text in more detail 
below. The BORO Foundational Ontology has a closely 
intertwined bCLEARer ontologization process described in [4] 
and [5]. There are a variety of domain level ontologization 
processes that we discuss later in this paper. 

B. The case for engineering the ontologization process  

The importance of engineering the process is reflected in the 
often-quoted dictum that: the quality of the process determines 
the quality of the product.  

For a historical background to this, from the wider history of 
innovation, see Mokyr’s The Past and the Future of Innovation 
[6] or his A Culture of Growth [7]. He argues that history shows 
that technological progress cannot rely on artisanal skills alone, 
it needs to be supplemented with formal and systematic (that is, 
engineered) knowledge. 

Within engineering, this idea was explored, analyzed and 
championed in manufacturing in the second half of the 20th 
century by quality management pioneers such as W. Edwards 
Deming [8] and Joseph Juran [9]. This led to a rich variety of 
designs including movements such as Total Quality 
Management and its successors Lean Manufacturing, and Six 
Sigma. These developed a fertile range of ways of managing 
manufacturing processes. An example is the Plan-Do-Check-Act 
(PDCA) Cycle used to design, implement, and refine processes 
on a small scale – which fits well with the Kaizen philosophy of 
continuous improvement, where processes are regularly 
reviewed and improved incrementally. This has spread to some 
other domains. For example, one can see Kaizen-like principles 
being used in the Agile software development methodology. 

Within the ontology engineering community, one does not 
find a comparatively rich selection of designs and range of ways 

of managing the ontologization processes – a kind of process 
design poverty. This is despite a few interesting innovative 
examples such as the ROBOT tool 
(https://robot.obolibrary.org/extract.html). Especially for top-
level ontologies, there appears to be more ‘theory’ for, and so 
more attention on, the design of the final product – ‘the 
‘ontology’ – than the process – ‘ontologization’ – that produces 
it.  

 From an engineering perspective, this imbalance looks 
unhealthy. One could argue that this poverty arises from the 
process being relatively new and under-researched, unlike, for 
example, top-level ontology which can build upon a rich 
heritage.  

1) Process design poverty in logic 
Interestingly, a similar poverty of design process has been 

pointed out in logic, which is a key part of the last stages of the 
‘ontologization’ process. Novaes [10] makes a product-process 
distinction for logic, distinguishing the formal product from its 
formalization process, noting an almost exclusive focus on the 
former in contemporary logic:  

“As a discipline, logic is arguably constituted of two main 
sub-projects: formal theories of argument validity on the basis 
of a small number of patterns, and theories of how to reduce the 
multiplicity of arguments in non-logical, informal contexts to the 
small number of patterns whose validity is systematically studied 
(i.e. theories of formalization). Regrettably, we now tend to view 
logic ‘proper’ exclusively as what falls under the first sub-
project, to the neglect of the second, equally important sub-
project.” 

She discusses two historical theories of argument 
formalization, from Aristotle and Medieval Logic that have 
more balance. Both “illustrate this two-fold nature of logic, 
containing in particular illuminating reflections on how to 
formalize arguments (i.e. the second sub-project).” She suggests 
reflecting on these should lead to a broader conceptualization of 
what it means to formalize.  

Given how much the ontology (engineering) product builds 
on formal logic – inheriting many of its (cultural) practices – this 
may contribute to the poverty in ontology engineering. This 
suggests that developments in the formalization process could be 
recruited by and enrich ontologization’s approach to 
formalization. 

C. Comparing different ontologization processes 

In this section, we briefly look at some current mainstream 
methodologies that guide the ontologization process to provide 
a basis for comparison with the data pipeline approach 
exemplified by bCLEARer. This gives us a rough benchmark on 
common practices. A caveat: we do not claim that this selection 
reflects all the work that is happening in this area. Rather, we are 
aiming for examples that lend themselves to our broad 
comparison.  

In this section we restrict ourselves to ontologization to help 
make a clear comparison. This is even though, as we touch upon 
later from a bCLEARer data pipeline perspective, there are 
interesting features in the methodologies guiding the processes 
in other software related domains, such as:  

https://robot.obolibrary.org/extract.html


 

 

• Waterfall model: clear top-down separation of 

concerns.  

• Agile: flexible, responsive, efficient, iteration 

• DevOps (and DataOps): automation into a data 

pipeline to improve and shorten life cycles. 

There is a reasonably rich literature on ontology 
methodologies, including [11], [12], [13], [14], [15], [16], [17]. 
We roughly divide these into two broad camps, which we have 
colloquially labelled: ‘Ask-an-Expert’ (AaE) and ‘Top-Down-
Classification’ (TDC). We have selected a representative 
document for each camp: For AaE, OntoCommons report D.4.2 
[18] and for TDC, Building ontologies with Basic Formal 
Ontology [3]. 

One aspect of these methodologies we inspect is the 
information pathway they create, the flow or movement of 
information through the stages of the overall process. We 
specifically explore how this interacts with the two dimensions 
of the design space. Firstly, the level of generality dimension 
which, for ease of understanding, we introduce from a data 
perspective as the metadata, schema and data levels. This is a 
simplification as it is about the syntax of the implementation, 
whereas generality is also a semantic matter. However, there is 
a good enough rough match between syntax and semantics here 
to make the substitution fair for our broad classification. 
Secondly, the levels on the journey to digitalization dimension  
[19], [20]. This looks at the evolutionary steps on the journey to 
digitalization. Very broadly a journey that goes from brains to 
speech to writing to printing and then computing. We call this 
the levels of digitalization. The results of the inspection are in 
the earlier Fig. 1. 

1) The ‘Ask-an-Expert’ approach 
We selected the OntoCommons report D.4.2 [18] as our basis 

for AaE. It suits our purposes as it not only describes its own 
approach (the LOT methodology) but documents other similar 
approaches (including Grüninger & Fox [13], 
METHONTOLOGY, On-To-Knowledge, DILIGENT, NeOn, 
RapidOWL, SAMOD and AMOD). Together these provide 
many good examples of the ‘Ask-an-Expert’ (AaE) approach, 
which has its roots in Artificial Intelligence (AI) and knowledge 
representation. 

This process is largely a rationalist armchair exercise – in the 
sense that there is little empirical content. The input for the 
process is domain experts – as this quote illustrates: 

“The goal of the ontology implementation activity is to build 

the ontology using a formal language, based on the 

ontological requirements identified by the domain experts.” 

[13, p. 28] 
Across all the approaches reviewed, there is a similar 

information pathway from a level of digitalization perspective. 
In the early stages there is an underlying focus on natural 
language (from a levels of digitalization view, speech), 
sometimes organized into (natural language) competency 
questions [13] – as this quote illustrates: 

“If domain experts have no knowledge about ontology data 

generation and querying, we recommend writing the 

requirements in the form of natural language sentences.” [13, 

p. 22] 
The methodology’s input to the information pathway is the 

brains of experts via speech into documented (unstructured) 
natural language. Then the methodology broadly separates 
concerns [21]: separating the confirmation of content from its 
formalization – and chooses to address the first concern before 
the second. 

We will revisit this point later, but it is important to note that 
this separation and ordering choice assumes that reaching 
content agreement prior to the formalization process won’t 
negatively impact the final product. In this design architecture, 
the first stage is a confirmation of content which uses mostly 
(unstructured) natural language which is organized and agreed 
as a statement of the requirements of the ontology. The second 
stage takes the natural language and formalizes them.  

The early pathway is not always or entirely natural language, 
as there is a mention of the possibility of using more structured 
information in the shape of a “tabular technique” using “3 types 
of tables: Concepts, Relations, Attributes”. Formalization 
(structured information) only really enters the process in the later 
stages of the pathway in ontology implementation, after the 
requirements (expressed in natural language) are collected. 

The paper notes that there is optionally a conceptualization 
stage, where an interim concept model based upon the 
requirements may be built. Interestingly, it suggests that 
“diagraming tools such as MS Visio or draw.io, as well as non-
digital tools as pen and paper or a blackboard” may be used to 
build this. 

2) The ‘Top-Down-Classification’ approach 
We take Building ontologies with Basic Formal Ontology [3] 

as the baseline for the ‘Top-Down-Classification’ (TDC) 
approach. This provides a clear example with a concise summary 
of how it aims to construct an ontology (this shows why it 
deserves the top-down-classification nickname). This process is 
also largely a rationalist armchair exercise, one that has roots in 
biological classification and philosophy. It is a common 
approach to developing top-level ontologies in Information 
Systems (IS). 

“Overview of the Domain Ontology Design Process 

Ontology is a top-down approach to the problem of 

electronically managing scientific information. This means 

that the ontologist begins with theoretical considerations of a 

very general nature on the basis of the assumption that 

keeping track of more specific information (for example, about 

specific organs, genes, or diseases) requires getting the very 

general scientific framework underlying this information right, 

and doing so in a systematic and coherent fashion. It is only 

when this has been done that the detailed terminological 

content of a specific science such as cell biology or 

immunology can be encoded in such a way as to ensure 

widespread accessibility and usability.” [3, p. 49] 
This informal view is then structured into a step-by-step 

process in a table – see below. 

Table 3.1  

An outline of the steps to be followed in designing a domain 



 

 

ontology 

1. Demarcate the subject matter of the ontology. 

2. Gather information: identify the general terms used in 

existing ontologies and in standard textbooks; analyze to 

remove redundancies.  

3. Order these terms in a hierarchy of the more and less 

general ones.  

4. Regiment the result in order to ensure:  

 a. logical, philosophical, and scientific coherence,  

 b. coherence and compatibility with neighboring ontologies, 

and  

 c. human understandability, especially through the 

formulation of human-readable definitions.  

5. Formalize the regimented representational artifact in a 

computer usable language in such a way that the result can be 

implemented in some computable framework. 
[3, p. 50] 

From this table, we can pull out a level of digitalization 
perspective along the information pathway. The first four stages 
work with unstructured natural language. Though the terms 
‘order’ and ‘regiment’, at steps 3 and 4, suggest some structure 
in the information, it is only at step 5 that the information is 
formalized, and so fully structured data enters the process. So 
here as well, the information pathway to the ontology starts with 
brains then via speech or directly into text is documented 
(unstructured) natural language. 

In the process, there is a similar reliance upon human experts 
to justify choices, see: 

“The terms in an ontology are the linguistic expressions used 

in the ontology to represent the world, and drawn as nearly as 

possible from the standard terminologies used by human 

experts in the corresponding discipline.” [3, p. 5] 
As an aside, it is often not recognized that the terms 

themselves, as inscriptions or utterances, are also elements of the 
domain that can usefully be represented in the ontology  

3) Process Comparison 
One can make a rough assessment of the engineering 

maturity of these methodologies. As the quotes above hint at, 
they are currently collections of "ad hoc rules" with simple 
heuristics. There is no background context to act as a foundation 
to guide the engineering of the process design – certainly no 
common context. Hence, they are, from an engineering design 
perspective, at an early stage of development. There is still 
plenty of scope for them to undergo the kind of serious 
engineering re-design Deming and Juran undertook for 
manufacturing.  

Both approaches have several features in common, ones that 
differentiate them from data pipeline approaches, such as 
bCLEARer. From the perspective of digitalization, in both cases, 
their early processes for establishing the base ontology focus 
their efforts on working with unstructured (pre-digitalization) 
natural language related to human understandability, with less 
focus on machine understandability. In both approaches the 
ontologization happens before the formalization. The 
(unstructured) ontological information is captured and 
regimented in natural language first and then formalized. 

One can broadly divide information into levels of generality. 
From a syntactic ‘data’ perspective, these are the natural levels: 
metadata, schema and data. For our purposes here, these are a 
good enough rough proxy for the semantic levels; top, the most 
general, middle and the most specific bottom level – typically 
particulars.  

We can use this perspective to show how the two approaches 
showcased differ and agree. They differ in their approach to the 
metadata level. The ‘top-down-classification’ approach works 
by framing the middle level in terms of the relevant top-level 
structure – so the middle schema level is framed by this 
metadata. The ‘ask-an-expert’ approach works explicitly at the 
schema level – focusing on the domain. In principle, there is no 
reason why the ‘ask-an-expert’ approach could not start with the 
metadata level, or the ‘top-down-classification’ approach could 
not ignore the metadata level and work at the schema level. The 
two approaches agree on their approach to the bottom data level. 
They both ignore it (a significant omission, we return to below).  

One can relate the design of the digitalization and generality 
features. If one chooses to design a process to work with humans 
and unstructured information, one needs to recognize that one is 
building in scaling constraints that block the processing of large 
amounts of information. One way around this is, of course, to 
work with the data level indirectly through the schema level. 
Data pipeline approaches take a different route and aim to 
automate the process so removing these scaling constraints. 

III. BCLEARER – HISTORY 

In this section, we provide more context with a brief 
background history of the data pipeline approach, bCLEARer 
and its place in BORO (an acronym for ‘Business Object 
Reference Ontology’). BORO’s development and deployment 
started in the late 1980s. This early work is described in Business 
Objects [4]. BORO’s focus was then, and is now, on enterprise 
modelling; more specifically, it aims to provide the tools to 
salvage and reuse the semantics from a range of enterprise 
systems building a single ontology with a common foundation 
in a consistent and coherent manner. 

BORO was originally developed to address a particular need 
for a solid legacy re-engineering process. This naturally led to 
the development of a methodology for re-engineering existing 
information systems, currently named bCLEARer – where the 
capital letters are an acronym for Collect, Load, Evolve, 
Assimilate and Reuse. This was co-developed with a closely 
intertwined top-level ontology (the BORO Foundational 
Ontology). Hence, the term BORO on its own can refer to either 
of, or both, the mining methodology and the ontology. 

Our focus here is on the bCLEARer methodology which is 
used to systematically unearth reusable and generalized 
ontological business patterns from existing data. Most of these 
patterns were developed for enterprises and successfully applied 
in commercial projects within the financial, defense, and energy 
industries. 

bCLEARer has evolved organically over the last three 
decades both in response to the evolutionary pressures of 
experience as well as exploiting the opportunities provided by 
evolving digital technology. An early version of the 
methodology is described in [4] – with a detailed description in 



 

 

Part 6. At the time this was developed, the late 80s and early 90s, 
the technology support was immature, so while the core process 
was systematized it was not fully automated. Over the last 
decade, as appropriate technology has emerged, the core process 
has been fully automated into a data pipeline. Later versions of 
this are described in several places, including [22]. There are 
also open-source examples on GitHub (https://github.com/boro-
alpha). 

bCLEARer (and its associated top-level ontology) have, over 
the years, been configured to exploit a variety of situations 
ranging from its original legacy system migration to application 
migration to developing requirements and quality controlling 
existing systems. A common feature of all these projects has 
been the initial collection of one or more datasets (where this 
may include both structured and unstructured data – though 
structured data is preferred) and its regimented evolution to a 
more digitally aligned state. 

IV. SITUATING DIGITALIZATION AS INFORMATION 

EVOLUTION 

We have established that (engineers have learnt that) the 
quality of the final product depends upon the engineering quality 
of the design of the process. We have also suggested that the 
mainstream ontologization processes are very lightly engineered 
with a weak background context. This indicates that there is an 
opportunity to develop a more engineered ontologization 
process. What is less clear is what form this engineering should 
take.  

Over the last three decades, the evolution of bCLEARer’s 
practices was initially driven by experience. This pragmatic, 
experiential approach is supported by many including Aristotle 
[23] who said, “for the things we have to learn before we can do 
them, we learn by doing them”. Reflecting upon the process has 
always been a central part of the practice. However, in the last 
decade, as the practice has matured, questions about the broader 
context have naturally arisen and this has led to a much better 
understanding of how the practice should be engineered. 

This better understanding has merged in large part from a 
recognition that for foundational issues, setting the right context 
can have a bigger impact on improvements than the quality of 
the problem-solving processes. This is not a new idea; it is 
already established in many fields. In the context of professional 
practice, Donald A. Schön’s “The Reflective Practitioner,” [24] 
raised the concept of problem setting as a crucial part of having 
a successful outcome. In design thinking, David Kelley 
emphasizes the importance of problem framing in his book "The 
Art of Innovation"  [25] explaining that reframing the problem 
often opens the door to more creative and effective solutions. In 
systems thinking, Peter Senge’s “The Fifth Discipline” [26] 
differentiates between problem identification and problem 
solving. For him effective problem solving involves identifying 
leverage points – places within a system where a small change 
can lead to significant, long-term improvements. 

In each of these cases, the initial stage involves developing a 
clear understanding of the underlying causes and 
interconnections of the entire complex system. Problem solving 
then involves developing interventions that address the root 
causes.  

In the case of ontologization there is a ready-made context 
that can provide the perspective needed – this is evolutionary 
theory. If one positions ontologization as an essential part of a 
much wider more pervasive phenomena, the latest information 
evolutionary step – digitalization (the emergence of computing 
technologies) then a new picture emerges. From a short-term 
perspective, this recapitulates the relatively recent steps of 
printing and writing. From a long-term perspective, this fits into 
an evolutionary trail of information transitions that spans life on 
earth. Within such perspectives, ontologization can be 
understood as a tool for exploiting the emerging opportunities 
offered by digitalization. 

We can then position the bCLEARer practices into the 
overall evolutionary context. This leads, in turn, to a clearer 
picture of the specific evolutionary pressures within the practice. 
From the start, bCLEARer has been framed in terms of 
information engineering, evolution and revolution. The narrative 
in [4] was the evolution of information paradigms. For much of 
its early life the focus of bCLEARer’s evolution has been 
pragmatic practice adapting to the evolutionary pressures 
presented by actual ontologization with only a modicum of 
reflection upon the nature of the process. In the last decade or so 
there has been more reflection on what these practices might 
reveal. We are reaching a conclusion that the best way to 
understand the design of the process is to make the originally 
evolutional framing much richer – to firstly more clearly frame 
the process as digitalization and secondly to show the 
digitalization as part of a wider trend that frames evolution in 
terms of information. 

In the next section, we set up a broad picture of this wider 
trend of evolving information. In the section after that we situate 
digitalization as one transition in that evolution. 

1) Situating digitalization as information innovation 
Digitalization is an information transition – and it turns out 

information transition is a ubiquitous pattern which can be used 
to frame the whole of macro-evolution. This provides a 
reassuringly broad context where digitalization is the latest in a 
long history of information transitions. 

Maynard Smith and Szathmáry [27], [28], [29] suggest that 
macro-evolution can be characterized as a series of information 
transitions and that one can frame the whole of macro-evolution 
in these terms:  

“… that evolution depends on changes in the information that 

is passed between generations, and that there have been 

‘major transitions’ in the way that information is stored and 

transmitted, starting with the origin of the first replicating 

molecules and ending with the origin of language.” 
And these changes in information transmission, the passing 

of “information … between generations”, are central to 
evolution. Maynard Smith and Szathmáry provide a table of 
seven major transitions, where the third is the "genetic code" and 
the seventh is "language". Each transition not only transforms 
life but also transforms the way life evolves – and so, in a sense, 
evolution evolves through transformations in information 
transmission. They also suggest that each of these transitions has 
accelerated and expanded evolution enabling more complex 
entities to emerge quicker. 

https://github.com/boro-alpha
https://github.com/boro-alpha


 

 

Jablonka and Lamb [30] expanded this framework saying: 

“… we argue that information transmitted by non-genetic 

means has played a key role in the major transitions, and that 

new and modified ways of transmitting non-DNA information 

resulted from them.” 
More specifically, they argue that: 

“The evolution of a nervous system not only changed the way 

that information was transmitted between cells and profoundly 

altered the nature of the individuals in which it was present, it 

also led to a new type of heredity—social and cultural 

heredity—based on the transmission of behaviorally acquired 

information.” 
This new type of heredity enables even faster, more flexible, 

more complex evolution. One key feature is that the social and 
cultural heredity is not (like genetic heredity) necessarily 
dependent upon (genetic) life cycles, so it can give rise to 
adaptations which easily spread through a population within a 
life cycle. This social and cultural adaptation is orders of 
magnitude faster than genetic evolution and, particularly in 
changing environments, faster adaptive evolution is more 
successful. Human culture is a good example of this. 

In Evolution in four dimensions: genetic, epigenetic, 
behavioral, and symbolic variation in the history of life [31], 
Jablonka and Lamb, describe in Chapter 9 – Lamarckism 
Evolving: The Evolution of the Educated Guess how new types 
of non-genetic heredity – behavioral and symbolic inheritance – 
enable a new directed evolution. They label this, understandably, 
Lamarckian. 

“… the variation on which natural selection acts is not always 

random in origin or blind to function: new heritable variation 

can arise in response to the conditions of life. Variation is 

often targeted, in the sense that it preferentially affects 

functions or activities that can make organisms better adapted 

to the environment in which they live. Variation is also 

constructed, in the sense that, whatever their origin, which 

variants are inherited and what final form they assume depend 

on various “filtering” and “editing” processes that occur 

before and during transmission.” 

a) Evolutionary transitions in information transmission 

This Lamarckian ‘targeting’ and ‘constructing’ enables 
further evolutionary transitions in information transmission. 
Obvious examples from symbolic evolution are the emergence 
of writing and printing information technologies. These involve 
fundamental “changes in the way information is stored and 
transmitted” where writing involved changes in structure and 
printing changes in economics. These both clearly led to further 
innovations in information evolution. Ironically, this reveals 
CRISPR technology, where DNA is selectively modified, as a 
Lamarckian genetic evolution.  

While the transitions clearly involve the use of new 
technology, closer examination (see, for example, Ong [32] and 
Olson [33]) reveals they depended upon the coevolution of 
human behavior and external information technologies. Where 
both the emergence and exploitation of the technology depends 
upon intertwined coevolution with human behavior. 

There is a similar intertwined evolution of behavior and 
technology so far in the emergence of computing technology. 
This current transition is often broadly called, in the context of 
enterprise processes, ‘digitalization’ – which includes 
‘digitization’, the process of converting information, data, or 
physical objects into a digital format, readable by computers. 

b) Domestication as an example of co-evolution 

A more familiar example may help us to appreciate the 
nature of coevolution – the domestication of plants and animals. 
This has been studied as a distinctive coevolutionary relationship 
between domesticator and domesticate in a range of research 
[34], [35]. In this domain, it is easy to see that both parties (the 
domesticators and domesticates) coevolve in the sense of 
contributing to the relationship. Zeder [34, p. 3191] describes 
domestication as a: 

“… relationship in which one organism assumes a significant 

degree of influence over the reproduction and care of another 

organism in order to secure a more predictable supply of a 

resource of interest.”  
Our relationship with the new digital forms of information 

technology can be described in a similar way. One where we 
domesticate our computer systems controlling their breeding. 

c) A new ‘digital’ form of information transmission 

In The Selfish Gene, Dawkins [36] introduced an idea. He 
distinguished between genes as “replicators” that pass on copies 
of themselves through generations and organisms as “vehicles” 
or “survival machines” constructed by genes to survive in the 
environment and so ensure their continued replication. 

One could adopt a ‘promiscuous ontology’, one that regards 
computer systems as a form of life subject to evolution [37], 
[38], [39]. If so, then computers can easily be seen as “vehicles” 
for the information they carry and replicate as well as things we 
domesticate and breed. Furthermore, the emergence of these 
individuals then passes the Smith and Szathmáry test in so far as 
it radically ‘changes the way information is stored and 
transmitted’ directly between these individuals – and with 
humans.  

One could be less adventurous and instead see the computer 
systems as an extension of humans [40]. In this view, computer 
systems are replicators rather than vehicles – they are part of the 
apparatus transmitting information rather than “survival 
machines” in a computer ecosystem. Even on this view, they 
pass the Smith and Szathmáry test. So, either way, one can see 
them as providing an opportunity for an information transition 
[20]. 

2) Narrower context – Lamarckian choices for co-evolution 
If, as looks likely, history repeats itself and this digital 

transition follows the pattern of most previous transitions, then 
it is likely to involve the coevolution of human behavior and 
digital technology. The energy enterprises currently devote to 
their digitalization efforts show an intuitive understanding that 
some kind of directed effort needs to be made. From our 
evolutionary perspective, we can see this as our culture starting 
to co-evolve with the new technology – looking to construct the 
Lamarckian variations that will exploit this opportunity. What is 
less clear is which Lamarckian constructed variations are likely 



 

 

to lead to significant success – in the language of evolution to be 
able to exploit the natural selection pressures well. 

Maybe history has a clue. A common historical narrative is 
that technology drives change, that it is the emergence of a new 
technology that initiates the associated cultural change. Careful 
study reveals a more interrelated pattern of co-evolution between 
technology and culture. Where cultural change often prepares 
the ground for technological innovation and then feeds off it and 
feeds further innovation. Olson [33] provides a relevant 
example, explaining how cultural developments in Western 
Europe from the 9th century onwards played a key role in the 
invention of moveable type in the 15th century. This 
technological innovation then laid the ground for developments 
in Western science in the 16th and 17th centuries. So maybe the 
coevolution of culture and digital technology evolution can give 
us some clues on where to target Lamarckian variations. 

It is well-accepted that work in logic and mathematics laid 
the foundation for computing. If we look at the culture of this 
work, then we can see some trends that help us to target 
variations to help the co-evolution. Well before the introduction 
of digital computers, Frege [41] uses the analogy of a 
microscope and the eye to explain how his formal language 
compares with ordinary informal language, noting that it 
provided a superior sharpness of resolution. Carnap [42] talks 
about ‘rational reconstruction’ (rationale Nachkonstrucktion). 
Quine [43] says that one doesn’t merely clarify commitments 
that are already implicit in unregimented language; rather that 
one often creates new commitments by regimenting. Quine notes 
that paying attention to the ontological commitment often leads 
to radical ‘foreign’ differences [44, pp. 9–10]: “Ontological 
concern is not a correction of lay thought and practice; it is 
foreign to the lay culture, though an outgrowth of it” Adding 
“There is room for choice, and one chooses with a view to 
simplicity in one’s overall system of the world.” Lewis [45, pp. 
133–5] following the theme of ‘outgrowth’, argues that the 
differences are a result of taking the lay common sense seriously, 
by trying to make it simpler and consistent. 

3) The ontologization value chain 
The bCLEARer methodology is an example of data pipeline 

approach, which is the topic of this paper. It has, through 
experience refined these historical intuitions, developing a view 
of the digitalization process as a network of transformation 
processes in a data pipeline. One way to characterize this is as a 
value chain, where each transformation adds value. We briefly 
outline what a value chain is below and then describe the 
factorization of digitalization into component transformations. 

a) Recruiting the value chain view 

In manufacturing, Porter’s value chain [46] provides a useful 
tool for broadly characterizing processes as a system of 
transformations. The system is provided with inputs which feed 
into a network of transformation processes. This network feeds 
into the output. The characterization is recursive. Each 
transformation process can be seen as a sub-system with its own 
value chain.  

We recruited a lightweight version of this tool to characterize 
ontologization. Under this view, at the broadest level, the 
ontologization process starts with pre-ontologization 

information and is transformed using an ontologization process 
into an ontology. It adds value by transforming the pre-
ontologization information into a formal ontology. This reveals 
an information pathway that starts with the pre-ontologization 
inputs, undergoes transformations and is output as a formal 
ontology. Different methodologies have different intermediate 
transformations and so different information pathways. While 
the inputs and outputs remain similar, the value chain 
transformations differ. 

b) Factoring digitalization into *computerized and 

*ontologized  

We firstly factorize digitalization into two types of digital 
transitions that it has found useful to target (and construct). 
These are *computerization and *ontologization. We use the ‘*’ 
prefix convention to indicate our specialized use of the term and 
differentiate it from the many other senses in which it is used. 

*Computerization is the process of converting relatively 
unstructured information into formally structured data. It implies 
something more than the digitization mentioned earlier, which 
just aims at bare computer readability. Formally structured data 
refers to information that is organized into a highly defined and 
predictable form, typically within a fixed schema or format. So, 
a scan of an engineering drawing in, say, PDF format would be 
digitized but not *computerized, as there is no direct way for the 
computer to read the components of the drawing. Whereas an 
engineering drawing in a CAD format, such as native DWG, 
would be *computerized, as the information in the drawing is 
explicit in its structure and can be read directly by a computer. 
*Computerization is intended to be a pragmatic distinction and 
while there are borderline cases, there are also cases that clearly 
fall into the pre-*computerization and *computerization camps. 

*Ontologization is the process of converting relatively 
semantically unorganized information into information 
organized into a common ontological structure. Typically, the 
information is used in a domain, and there is a level of semantic 
precision needed for it to be fit for purpose. The *ontologization 
organizes the information into a common ontological structure 
that is sufficiently fine-grained to capture the requisite semantic 
precision. 

One way of characterizing *ontologization is that it develops 
an explicit picture of ontological commitment [47], [48]. There 
is a long tradition of seeing this process as a transformation that 
reveals a deeper structure.  

Currently, most information systems being digitized have no 
precise explicit ontological commitment. So, in practice, the 
*ontologization is often a regimentation [43] and rational 
reconstruction [42] of what the ontological commitment would 
be given some preferred top-level ontology. In bCLEARer’s 
case, the top-level ontology is the BORO Foundational Ontology 
[5]. 

c) *Computerization – transitioning from implicit to 

explicit formal structure 

The bCLEARer methodology has further identified a 
factorization of the *computerization transition into two sub-
transitions: surface-*computerization and deep-
*computerization, corresponding to two levels of 
*computerization. 



 

 

The process of transforming unstructured pre-*computerized 
information, giving it a highly defined and predictable form is 
sufficient to make it surface-*computerized. Much data in data 
stores is in this state today. It may, and often in practice does, 
have significant implicit formal structure. In some cases, making 
the structure implicit may be deliberate, as part of the process of 
improving the performance of a system. For our purposes we 
want to make the structure explicit to facilitate the 
*ontologization. We do this in the process of deep-
*computerization. 

Uncovering the underlying implicit form of surface-
*computerized information requires a degree of ethnographic 
hermeneutics – one needs to be able to interpret, to understand, 
its implicit structure from its perspective. The deep-
*computerization transformation aims to expose this and, as far 
as feasible, make the underlying infrastructure transparently 
clear. 

A simple example of surface-*computerized information 
would be SQL table schemas and their associated data without 
the foreign keys noted. This meets the criteria for being 
*computerized – it has a fixed format. However, when the deep-
*computerization adds the foreign keys, one can appreciate that 
the pre-deep-*computerization information had implicit 
structure that was not explicitly visible to a computer reading the 
data. In other words, it was only surface-*computerized. 

There are existing software techniques that work in this 
space, that one can build upon. These include refactoring [49] 
and clean coding [50]. Both are bodies of practices for 
restructuring existing code, altering its internal structure to 
improve it, without changing its external behavior. The 
restructuring can be recruited to reveal the deeper structure. 

From an ethnographical perspective, deep-*computerization 
(and maybe surface-*computerization too) is a kind of 
‘surfacing’. As Star notes in The Ethnography of Infrastructure 
[51] the details are technical and “excursions into this aspect of 
information infrastructure can be stiflingly boring”. This means 
that large parts of the infrastructure are often invisible, in the 
sense that one doesn’t pay attention to them. So, one of the 
challenges is training oneself to see, and so surface, the invisible 
structure – a practice with similarities to Bowker’s [52] “infra-
structural inversion”, which foregrounds the backstage 
operational elements. 

As with the other factorizations, this is intended to be a 
pragmatic distinction where most cases clearly fall into one or 
other camp – but with some borderline cases. One common 
borderline case is data cleansing. This includes technical matters 
such as resolving encoding issues and the treatment of 
whitespaces (which we find are both still common) as well as 
keying and spelling errors. While these might degrade the 
quality of the surface-*computerized information, they do not 
seem sufficiently grave to undermine its *computerized status. 
And fixing them does not obviously qualify as immediately 
revealing implicit structure – though if they are not fixed, they 
can hide structure. For pragmatic reasons, we take fixing these 
to be part of the deep-*computerization process. 

d) Inter-process dependency 

Obviously, there is an order to the surface- and deep-
*computerization process. One surface-*computerizes 
information before *deep-computerizing it. Theoretically, at 
least, the *computerization and *ontologization processes would 
seem to be sufficiently independent that one could undertake 
either one without the other – implying that there is a choice in 
which to do before the other.  

However, the bCLEARer experience is that there are strong 
pragmatic reasons for undertaking the full *computerized 
transition before undertaking the *ontologization transition [48], 
[20]. Our experience has been that the formalization process 
inherent in *computerization is best done with raw unaltered 
data, straight from the operational ‘wild’. This is because we 
found that in cases where the *ontologization process was 
carried out on pre-*computerization information, it often 
obfuscated structure that *computerization needed – making the 
overall process significantly harder. Hence, in bCLEARer we 
see *ontologization as primarily a process for refining already 
*computerized data.  

V. BCLEARER’S BROAD STRUCTURE 

The bCLEARer process has been modularized (see [53, App. 
B], [54]) into a component architectural pattern. We describe this 
in the first section. 

In the earlier comparison of current methodologies, we 
assessed them relative to two levels: generalization and 
digitalization. We now describe how bCLEARer addresses these 
levels in the second and third sections below. In the final, fourth, 
section we look at whether it is better to surface-*computerize 
(using bCLEARer) in vitro or in vivo. 

1) bCLEARer’s Pipeline Component Architecture 

Framework 
The bCLEARer process has a pipeline (pipe-and-filter) 

architecture [54], a prevalent approach for data transformation. 
This architecture consists of a sequence of processing 
components, arranged so that the output of each component is 
the input of the next one creating a ‘flow’. The pipeline 
architecture has, as the 'pipe-and-filter' name suggests, a series 
of pipe and filter components, where pipes pass data to and from 
filters that transform the data — the pipeline flow. The 
architecture can be nested, in that filters can encapsulate a sub-
pipeline process. 

This generic architectural pattern is refined into a more 
constrained pattern for bCLEARer’s more specific needs. It 
must include the components of the ontologization process in a 
structure where the specific arrangement of components can be 
dictated by the needs of the project and this arrangement can 
flexibly evolve over time, potentially into a radically different 
shape.  

Typically, it is divided into three broad levels: 

1. thin slices – which typically correspond to ways of 

dividing the domain and the dataset [55] 

2. bCLEARer stages – the stages that correspond to a 

particular type of transformation 



 

 

3. bUnits level – the filters within a single bCLEARer 

stage, the base filters are called bUnits. 

a) The bCLEARer stage types  

While the contents of the individual thin slices and bUnits 
level vary from project to project depending upon their needs, as 
well as evolving over time, the bCLEARer stage types are a 
more stable architectural feature. The design of these types is 
motivated by the ‘separation of concerns’ [21] principle – where 
each type deals with a different kind of transformation. This 
builds upon the factorization discussed above. The five stage 
types are Collect, Load, Evolve, Assimilate and Reuse (whose 
initials contribute to the acronym bCLEARer). 

Collect is the stage at which a dataset enters the pipeline. 
Collect stores the dataset and ensures it is not changed. There is 
no transformation at this stage. This provides a fixed baseline for 
tracking. Larger datasets are divided into chunks, to be 
consumed one chunk at a time. 

The Load stage receives the dataset from the Collect stage. 
The first thing it does is establish the identity of the contents to 
facilitate tracking and tracing. The Load stage is responsible for 
ensuring that the data passed onto the next Evolve stage is 
*computerized – at least surface-*computerized. If the dataset 
comes from an operational application system that uses an 
enterprise database, the data will probably be sufficiently 
structured and so need no *computerization transformation. If it 
is unstructured text, for example a PDF text document, it will be 
pre-*computerized, and so need transforming. The Load stage 
undertakes the minimal amount of transformation to 
*computerize it, in effect it surface-*computerizes it. Where this 
is required, the project will need to decide on the output format 
to use. In our projects, we usually make the target structure 
simple tables. 

The Evolve stage assumes its input data is (at least) surface-
*computerized. It is responsible for digitalizing this input data. 
This is done in two major sub-stages. First it deep-*computerizes 
the data and then *ontologizes it. Typically, the very first 
exercise in the deep-*computerize stage is to check whether the 
data needs cleaning, and if so, clean it. When the data comes 
from several systems, it normally makes sense as part of the 
deep-*computerization stage to integrate the data across systems 
into a common format, as far as possible, after firstly 
transforming the data from each system on its own. When the 
deep-*computerization is complete, the *ontologization can 
start. This is guided by a minimal foundation, the BORO Seed – 
for an example of a relatively recent minimal seed see Top-Level 
Categories [56]. A full digitalization project will include both 
*computerization and *ontologization. But pragmatic 
considerations may dictate that this is done in phases – and the 
early phases may only go so far along the digitalization journey. 
For example, undertaking deep-*computerization and delaying 
*ontologization to a later stage. 

The Assimilate stage assumes its input data is ‘evolved’ – so 
both locally *computerized and *ontologized. It is responsible 
for assimilating this into a common cross-project model. The 
assimilated model is then ready for use in future Assimilate 
stages. 

The Reuse stage assumes its input data is assimilated. It is 
responsible for translating this data back into a format usable by 
the targeted operational systems. 

b) Managing micro-coevolution  

To some extent, the discussions about factorization and 
components shift focus away from the micro-coevolution that 
takes place. The bCLEARer journey typically involves 
evolutionary adaptations simultaneously on two fronts: 

• Information Evolution: Adaptation of information 

throughout its journey. 

• Journey Evolution: Adaptation of the journey itself to 

emerging requirements, accelerating the information's 

evolution. 

The whole process supports both these adaptations: 
identifying and accommodating significant changes in both the 
information and its digital journey. A key element is adaptive 
resilience: maintaining stability and efficiency of the 
factorization and components amidst continuous change. 

2) A bCLEARer example 
A concrete example of how *computerization and 

*ontologization are deployed in the first three bCLEARer stages 
might help to make some of these points clearer. Let us say we 
have a legacy migration project that encompasses intercompany 
accounting systems. We have three source systems: PHAS (Peak 
Holdings Accounting System) from Peak Holdings Ltd, AAS 
(Acme Accounting System) from Acme Ltd and ZAS (Zenith 
Accounting System) from Zenith Inc., where the latter two 
companies are owned by Peak Holdings. For simplicity, assume 
all three systems are being migrated to a new COTS system – 
NAS (New Accounting System). Assume there is also a desire 
to take this opportunity to harmonize the accounting practices 
across the three systems. Using bCLEARer provides a 
systematic approach to not only integrating the data but also 
exposing digitalization opportunities. 

a) Collect stage 

The Collect stage will initially take a snapshot of the full 
dataset from the systems for the initial development of the 
pipeline. Later snapshots will be taken as required. As these 
datasets come from operational systems, they have a holistic 
coherence and consistency that we need to make sure persists 
through the bCLEARer process. 

a) Load stage 

For simplicity, assume the PHAS, AAS and ZAS systems all 
use relational databases. The datasets are already surface-
*computerized so there are only a few further specific 
*computerization tasks needed at this stage. The first task in 
bCLEARer Load is always to mark the identity of the data, to 
provide a baseline for tracking and tracing. We give the systems, 
tables, columns and rows identities – and, where necessary, the 
cells as well. This is typically done with a cryptographic hash 
function.  

We also identify and inherit from the source systems the 
queries that can be used to check for coherence and consistency. 
These would include standard reports such as, in this case, the 



 

 

account ledger, balance sheet and profit and loss reports. We 
typically run and hash the figures in the reports so we can easily 
run a simple automated binary comparison check. 

a) Early Evolve stage – *deep-computerization 

The early Evolve *deep-computerization stage is approached 
with an ethnographic mindset, interpreting and understanding 
the dataset’s implicit structure from its own perspective – aiming 
not to introduce any biases. This opens the possibility for a 
multiplicity of syntactic changes (adaptations) – data cleansing 
being one type. 

b) Early Evolve design pattern – unification of types 

The Evolve stage focuses on deep-*computerized. We have 
developed a range of design patterns to facilitate this stage. One 
useful design pattern simplifies the handling of data formats. 
There is no restriction of the format in which the dataset comes 
in at the Collect stage. It could be in XML, JSON or SQL or a 
combination of these or other formats.  

However, for the ontologization process these specific 
implementation data formats are an irrelevancy so can be filtered 
out. The higher levels of (syntactic) generality, the metadata and 
schema can be mapped into the data, which removes the 
dependency on any specific implemented format. We call this 
mapping the unification of types [37], [57]. This enables us to 
choose for this stretch of the pipeline a data format that suits the 
work we want to do – and build common code for this. It also 
greatly simplifies making the metadata explicit – as what was 
built implicitly into the collect data form can now be made 
explicit. 

In the case of the three systems, which use relational 
databases, the tables and columns are shifted into the data – 
unifying the schema and the data. At the same time, the balance 
sheet, profit and loss and other queries are adapted to the unified 
data structures and used to test the relevant semantics are 
preserved. There is no gap between the migration to the unified 
structures and testing with the queries. 

When we have unified the types, we have standard tools to 
graph-visualize the data. We do this at each major stage along 
the pipeline. We have found (and it is well-recognized) that it is 
a good way to handle large quantities of data. 

a) Early Evolve stage – syntactic integration 

Typically, different systems implement what is clearly the 
same information in different structures, sometimes very 
different structures. This creates opportunities for syntactic 
integration. For example, the format for the chart of accounts and 
postings is likely to vary between the three systems. At this 
stage, we take the opportunity to make simple changes that 
harmonize the information in the three systems, taking care to 
respect the perspective of the individual systems.  

a) Later Evolve design pattern – *ontologization 

Once the opportunities for deep*computerization have been 
exhausted, if appropriate we move to the later Evolve stage and 
start the *ontologization. However, there may well be situations 
where it makes sense to delay this until some future project. 

*Ontologization typically involves making semantic 
adaptations. We have *ontologized accounting systems before 

and seen the kind of semantic adaptations that emerge, see [58], 
[59], [60], [61], [62]. One adaptation these identify – see [62] – 
is the shift from de se perspectival accounting to de re ’objective’ 
accounting. We would expect this adaptation to emerge here as 
well.  

The way it would emerge is as follows. The top ontology 
would provide criteria for identity. When these are applied to 
individual intercompany transactions, this will provide the basis 
for recognizing where transaction and accounts are the same. 
However, under current accounting conventions these will be 
marked with opposing debit and credit properties. Transactions 
and account balances that are marked in one system as debits 
will be marked as credit in the other system. It turns out that 
whether these are tagged as debit or credit is subjective and 
depends upon which company’s perspective is taken. One then 
recognizes debit and credit as a relational property between the 
transaction and the company.  

In more practical terms, it means that the form of the data is 
changed. All the identical original accounts and transactions are 
merged into new ones – and a debit/credit relation between the 
company and them are established. These changes start in the 
data and are propagated into the schema. At the same time, the 
queries are amended (evolved) to take account of the new 
structure – and tested to ensure they can reproduce the figures in 
the original reports. They both confirm the consistency of the 
new structure and help to ensure the adaptation is preserved 
along the pipeline. One can recognize this as an empirical 
exercise where the changes emerge from the data. It is hard to 
see how rational inspection of the schema without consideration 
of the data could lead to this adaptation.  

3) bCLEARer’s level of generality approach 
We introduced the broad division of information from a data 

perspective into these levels of generality: the metadata, schema 
and data levels. We can use this to classify the methodologies’ 
information pathways and so clearly differentiate the 
methodologies. 

a) Scoping level of generality 

We can see differences in the ‘generality’ scope of the 
methodologies’ information pathways. As shown in Fig. 2, the 
mainstream ‘ask-an-expert’ (AaE) and ‘top-down-classification’ 
(TDC) methodologies differ in that AaE scopes the metadata 
level out and TDC scopes it in. The two mainstream 
methodologies differ from bCLEARer in their scoping of data. 
The two mainstream methodologies scope the data level out and 
TDC scopes it in. 

 

Fig. 2. Methodology information pathway – levels of generality 



 

 

This descoping is reflected in the standard ISO 21838-1 
where a domain ontology is defined in section 3.18 thus: 
“ontology (3.14) whose terms (3.7) represent classes (3.2) or 
types and, optionally, certain particulars (3.3) (called  
distinguished individuals‘) in some domain (3.17)” – and later 
says “Some ontologies also allow terms representing certain 
privileged particulars (referred to as ‘distinguished individuals’), 
such as ‘the actual world’, ‘spacetime’, or (in an ontology of US 
law) ‘the US Supreme Court’”. The standard recognizes that the 
domain includes particulars, as it is defined in section 3.17 thus: 
“collection of entities (3.1) of interest to a certain community or 
discipline” with a note to say “‘Entities of interest’ can include 
both particulars and classes or types.” The standard assumes 
(without explanation) that unless something is a special 
‘distinguished’ particular, it is excluded from domain 
ontologies.  

This radical descoping approach would make sense if one 
somehow could acquire a high degree of confidence that the 
rationally designed schema structures would adequately support 
the requirements of the domain data. In software engineering, it 
is well-recognized that we do not have the tools to provide this 
confidence, that one needs to empirically test the schema with 
data to acquire a sufficient degree of confidence. So, the radical 
descoping of data effectively eliminates any direct testing of 
schema patterns that involve data – in other words empirical 
testing. 

Historically, projects have typically built in a delay between 
the rational design and the empirical testing. One can see this 
clearly in waterfall-stye software development, where 
significant data has historically only been introduced into the 
project for volume testing.  

However, the more one delays including sufficient 
significant data in scope, the greater the gap between the 
introduction of a defect and the possibility of finding and fixing 
it and the more difficult and expensive it becomes to fix. Hence 
the development of methodologies such as Extreme 
Programming [63] that aim to identify defects early. And the 
emergence of discussion of a shift left approach [64], where 
testing is performed earlier in the lifecycle. More recently, 
DevOps has embraced this approach. 

Delaying the testing may once have been a justified 
pragmatic choice. Typically, in most systems there is far more 
data than schema – and more schema than metadata. So, an 
initial descoping of data will usually have the effect of 
significantly reducing the size of the dataset, making it feasible 
to manage with existing technology. In the last decades of the 
20th century, there may have been good technological reasons 
for working this way, but this is no longer the case. 

The bCLEARer approach is fundamentally empirical. It 
expects the design patterns to emerge from the data. Design 
patterns are described in terms of the data that exemplifies them. 
Hence there is literally no gap between design and testing – they 
are the same process. 

b) Top-level ontology deployment 

There is an element of ambiguity about the metadata level 
that becomes clear when we consider bCLEARer. In the ‘top-
down-classification’ and ‘ask-an-expert’ approaches the main 

information pathway starts with unstructured data, which has no 
top-level metadata (though it may have provenance ‘metadata’). 
In the ‘top-down-classification’ approach the top-level metadata 
is a previously prepared top-level ontology. 

When bCLEARer is processing a structured dataset, this will 
have top-level metadata – the structure of the data into, for 
example, tables, columns and rows. During the deep-
*computerization stage, this will be made explicit, where it is not 
already. At this stage one works with the data rather like an 
ethnographer working within a culture – aiming to make its 
implicit, invisible assumptions explicit without imposing one’s 
own views, especially on the nature of the domain. 

At the *ontologization stage, the situation is different. The 
ontological commitments are usually far from clear and often the 
top-level commitments completely inscrutable. bCLEARer gets 
around this by introducing a top-level, but it does not want to let 
this interfere with the underlying picture of the domain. So, 
bCLEARer aims for a balance where the top-level is sufficiently 
ontologically rich and complex to guide the analysis effectively, 
but also sufficiently minimal that it does not hinder, or block 
refinements emerging from the bottom (data) or otherwise 
render the validation ineffective. One aims to seed the process 
with a top-level that is sufficient to make the ontological 
foundations, and so the ontological commitments, scrutable. 
This could then guide the *ontologization. One also aims to 
make this as minimal as possible to maximize the benefits of 
bottom-up grounding. To be as open as possible to refinement as 
the lower-level ontological commitments emerge from and are 
confirmed in the data. For a discussion of how to construct a 
minimal seed see Top-Level Categories [56]. 

4) Navigating levels of digitalization – the information 

pathway 
As the two methodologies we looked at earlier show, an 

ontologization process will have an information pathway that 
navigates the levels of digitalization. How should one design this 
navigation? 

a) Shifting digitalization right or left 

One can characterize this pathway in terms of whether the 
transformation to *computerization (from unstructured to 
structured data) is performed earlier or later in the lifecycle (that 
is moved left or right on the project timeline). Fig. 3 shows us 
this for the three methodologies we are looking at. 

 

Fig. 3. Methodologies – Levels of digitalization 



 

 

The ‘ask-an-expert’ (AaE) and ‘top-down-classification’ 
(TDC) approaches, looked at earlier, shift right. They move the 
transformation to *computerization towards the end of the 
project lifecycle (and *ontologize at the same time, without 
intermediate steps).  

Data pipeline approaches, such as bCLEARer, shift left. 
They aim to make the information pathway transformation to 
*computerization as early as possible. The ideal case is when the 
collected dataset is already structured so already *computerized.  

What motivates this position is the aim to be in a situation 
where the data pipeline can run automatically, getting into 
‘machines talking to machines’ territory as soon as possible. One 
only needs surface-*computability, not deep-*computability. 
Hence, one gets all the benefits of automation as early as 
possible. 

b) Example – definitions as a marker of digitalization 

maturity – shifted right or left  

A good marker of the level of digitalization of an approach 
is how it handles natural language definitions for humans. The 
level of maturity of this process is a good guide to the overall 
level of digitalization.  

[3] is a good example of a common practice. It has 8 pages 
(pp. 68-76) and the same number of principles (13-20) devoted 
to how to write (in natural language) definitions properly. The 
first principle (13) states: “Provide all nonroot terms with 
definitions.”  

From an information pathway perspective, the information is 
assembled in a human brain and translated into natural language 
text. Then it is (hopefully) used as an input to a later manual 
formalization: as the text is not computer readable. Also 
(hopefully) when the formalization changes, then effort is made 
to manually bring the natural language text in line. This effort is 
manual, so is prone to error and does not scale. Clearly, this 
process is at a pre-*computerization level of digitalization. 

Stafford Beer [65] said, “the purpose of a system is what it 
does” (converted into the acronym POSIWID) and, to drive the 
point home it has been observed that there is no point in claiming 
that the purpose of a system is to do what it constantly fails to 
do. The same point applies, more narrowly, to a computer 
system’s use of a term. If the system (somehow) uses the term in 
a certain way, then that is surely what the term ‘means’ to the 
system. If one writes the code for the system in a ‘clean’ way 
[50], we can algorithmically translate the way it uses the term 
from the machine language of the system into something human 
readable. Surely this ‘definition’ with its direct connection with 
what the system actually does is far more trustworthy than 
something produced by humans on behalf of the system. And we 
can also trust that as the system evolves and changes, this 
‘definition’ will change with it.  

Hence, bCLEARer-type approaches aim to clean the data in 
the pipeline so that the natural language definitions can be 
algorithmically extracted directly. From an information pathway 
perspective, all the definitional work is automated, predicated 
upon at least cleaning the data. This avoids all the manual effort 
that would have been devoted to these definitions. Clearly, this 

process is at least at a *computerization level of digitalization, 
and at an *ontologization level if one needs better output. 

5) Digitalization – surface-*computerization – in vivo 

versus in vitro  
Directed evolution introduces an in vitro mimicry of in vivo 

evolution. This raises a natural question about what factors affect 
the choice between these two approaches. Obviously, a big 
factor is how successfully one can target good adaptations. 

Given that we have operational enterprise systems, then it is 
plain that in vivo evolution can produce working computer 
systems (so surface-*computerized data). There is also lots of 
evidence of failed projects, so we know that it is not easy. 

When we have these systems, the problems of dirty data are 
well known. If one looks, in any detail, at the data innards of 
successful enterprise operational systems it is surprising how 
well they work given how ‘dirty’ and disorganized they are. Data 
cleansing exercises show how relatively easy it is to improve 
them. This suggests that one can target good adaptations for the 
deep-*computerization process. bCLEARer’s experience agrees 
with this. 

When one works with these systems, it soon becomes clear 
that most have little or no clear ontological commitment. One 
simple test is to see how the system handles mereology – it is 
rare to find a system that has a clear picture of this. Similarly for 
multi-level types [22]. bCLEARer’s experience suggests that if 
done properly then building in a clear ontological commitment 
is feasible and can reap significant benefits. 

Together these suggest that one can target good adaptations 
for deep-*computerization and *ontologization provided one 
has the surface-*computerized data. It also suggests that in vivo 
natural selection is not so good at finding these adaptations, at 
least in the timescale these systems have had to evolve.  

From a more general perspective, this suggests that the role 
of ontologization is not to facilitate the first step in digitalization 
– surface-*computerization, but more to enable a second step 
that significantly improves systems. 

a) Experienced systems 

It is normal to think of computer system quality degrading 
over time, that as systems get older, they accumulate technical 
debt and the quality of their data declines. It may well be true 
that, as the amount of data in a system grows, the amount of 
erroneous data items also grows. But this misses an important 
point from our perspective, that systems accumulate a kind of 
experience over time. Typically, both the variety and complexity 
of their data increases and it becomes a better reflection of the 
domain. This reflects the enormous investment in both the 
operation and maintenance of the system.  

From the bCLEARer-type data pipeline perspective this 
‘experience’ is valuable. As Ashby’s discussion [66] of variety 
makes clear the richness and complexity of the picture we build 
of the domain will depend upon the richness and complexity (the 
variety) of the data we use to build it. 

From one perspective, this is a classical evolutionary 
situation. A biological unit (in this case, a computer system) 
garners information about its world that is useful to it. Unless 



 

 

this information is heritable, and inherited, then it stops being 
useful when the unit dies. Genetic inheritance is a very lossy way 
of transmitting information. Pipelines like bCLEARer offer the 
prospect of salvaging significant portions of the data. 

From another, breeding perspective, it suggests a rule of 
thumb. Given that we aim to harvest domain patterns from the 
digitalization exercise, then if we select more experienced 
operational systems – and several of them – then we will harvest 
richer more accurate patterns. 

b) Harvesting pre-*computerization 

There is a flip side to this. What should we do in cases where 
there is not even an operational system, let alone an experienced 
one. We can deploy ontologization processes on pre-existing 
unstructured data or even synthesize unstructured data. The 
synthesized data will not have been subjected to any real 
selection pressures. The unstructured data may have been 
subject to some selection pressures, but these will not shape its 
formal structure (as it is unstructured). In these cases, there 
seems to be a lack of variety, or at least the right kind of variety.  

A rationalist might think armchair reflection will be able to 
provide requisite variety. But this will be rooted in brain 
wetware, speech and writing – all legacy technologies from a 
computing perspective. Is this good enough to target good, 
computerized adaptations? There is a lack of data on this topic, 
but our anecdotal evidence is that it falls well short of what is 
required. That without the computer experience to build upon, 
our targeting falls back on legacy technology patterns of thought 
that prove unsuitable for the scale and formal precision of 
computerization. 

VI. SITUATING DATA PIPELINES AS EVOLUTION  

One can see the goal of a bCLEARer-type data pipeline 
project is to build an in vitro high evolvability environment for 
information, providing it with the possibility of evolving fast. 
This environment is easier to build when one develops a 
sensitivity to the complex set of drivers that the evolutionary 
perspective reveals. 

The evolutionary perspective is an incredibly rich resource, 
and we are still in the process of understanding how the 
digitalization process fits into it. However, there are several 
elements of the perspective that we have found useful, and we 
outline a few of these in this section to provide a sense of what 
the perspective entails. 

1) Data pipelines as directed or experimental evolution  
From an evolutionary perspective, the bCLEARer-type data 

pipeline methodology can be seen as a kind of directed [67] (or 
experimental [68]) evolution – where experimental evolution is 
sometimes called “laboratory natural selection”. 

Direct evolution is used in protein engineering – and 
contrasted with rational design, which targets specific point 
mutations. However, from a broader perspective, the range goes 
from random natural mutation to deterministic rational design 
with directed evolution somewhere in the middle. But the rate of 
natural mutation is usually insufficient for generating the genetic 
diversity required for laboratory directed evolution, so it is out 
of scope. Directed evolution balances the difficulty of 
‘rationally’ accurately predicting how specific mutations will 

impact protein function with the slow and unpredictable pace of 
natural selection. It uses targeting but reduces the need for 
accurate predictions replacing by iteratively selecting mutations 
and ‘empirically’ testing them. 

In the digitalization context, rational design would be 
attempting to build the ontologization from first principles, 
whereas the directed evolution would start with the existing data 
and target a range of likely mutations and iterative tests which 
lead to better adaptations. In a process broadly analogous to 
directed and experimental evolution, it repeatedly targets and 
constructs variants in an iterative step-by-step process, 
continually inspecting the results and selecting for fitness, 
aiming to mimic natural selection. 

This evolution is directed in the sense that there is an element 
of Lamarckian target setting when managing the mutations, 
which, when successful, speeds up the evolution. The direction 
cultivates and nurtures evolution – focusing on fostering and 
guiding innovation – rather than purely analyzing or breaking 
down data. The aim is to guide the selected dataset (of 
information) along a journey of digitalization transformation 
that exploits the opportunities offered by digital technology. 
More specifically, to exploit the opportunities for 
*computerization and *ontologization of information. 

2) Data pipelines as evolving information transmission  
Inheritance involves the transmission of information 

between individuals. Genetic heredity involves passing 
information from one generation to the next – often called 
vertical transmission. Sexual reproduction is an example of 
vertical transmission – transmission from parents to their 
offspring.  

If, as suggested earlier, we see computer systems as 
biological individuals, then within digitalization, legacy system 
replacement can be seen as a good example of vertical 
transmission, where the data (information) in the legacy system 
is transmitted to the new system.  

A bCLEARer-type data pipeline works at the level of 
information transmission – in other words, transmission between 
systems. If deployed in the legacy system replacement case, it 
would take control of the transmission of information from the 
legacy to the new system. So, the pipeline can be seen as an 
example of digitalization information transmission, with a focus 
on developing adaptations during transmission between 
computers. 

Developing adaptations during information transmission is 
not new to evolution. In natural evolution mechanisms for 
creating adaptations during information transmission have 
arisen, sexual reproduction being a classic example. The genetic 
recombination of genetic material from two parents can 
introduce novel variation.  

bCLEARer-type data pipelines are designed for fast 
evolution. For good empirical reasons, biological experimental 
evolution, mentioned above, will often adopt a life span speed 
strategy. It will select individuals, such as fruit flies, with a short 
life span, to enable testing to occur over multiple generations and 
so speed up evolution. However, this strategy of shortening life 
spans and increasing the number of generations makes less sense 
in the pipeline case, where (among other things) there is not a 



 

 

plethora of systems with short lifespans. However, the general 
strategy of increasing the pace of evolution stands. pipeline 
achieves this through both extending and enriching the 
information transmission process as well as iterating it – 
mimicking the evolution of multiple generations within a single 
transmission. 

3) Challenge – uncertainty, contingency and chance  
The uncertainties around innovation are well-known [69]. 

One way these uncertainties are framed in evolution is as 
contingency [70], [71], This recognizes that evolution is a 
historical process and so is sensitive to and so contingent upon, 
the paths taken in its journey – in other words, sensitive to 
chance.  

In general, the potential for innovation is usually so wide-
ranging, so subject to chance that it makes no real sense to ask 
whether an opportunity has been missed. However, in the 
restricted digitalization context, we are designing systematic 
processes that more regularly lead to innovations and so making 
adaptations significantly less subject chance. In this situation, it 
makes sense to ask whether we are missing innovation 
opportunities that we could (should?) have spotted.  

a) Macro- and micro-evolutionary contingency 

To illustrate evolutionary contingency, Stephen Jay Gould 
[72] used the thought experiment of rewinding the “tape of life” 
to the distant past. He argued that even small changes to the path 
of history could result in evolutionary outcomes very different 
from our world, such as, for example, no humanity.  

For our purposes, we can usefully distinguish between 
broadly global macro-contingency and local micro-contingency. 
Where global macro-contingency is whether a particular major 
outcome will ever (globally) happen – for example, humanity or 
language or computers emerging. And local micro-contingency 
is whether a particular minor outcome that could happen will do 
so in a local situation. We see micro-evolutionary contingency 
when different similar beetle populations respond differently to 
the same pressures – such as climate change.  

b) Evolutionary data pipeline contingency 

We can translate macro- and micro-evolutionary challenges 
to our bCLEARer-type data pipeline digitalization context.  

At the macro-evolutionary level, we recognize that it is not 
inevitable that humanity will exploit the major opportunities of 
digital technology. We have already noted that the exploitation 
of technology depends upon the appropriate co-evolution of 
technology and cultural practices. And that the evolution of the 
cultural practices depends, at least in part, upon the appropriate 
Lamarckian targeting. If this doesn’t happen, the innovation 
opportunity will be missed. The (broadly) global question asks 
whether it will happen in our (near) future.  

The concern is not entirely theoretical as we have examples 
from the past. Olson [33] also describes how Western European 
culture successfully evolved to take advantage of printing 
technology when cultures in other parts of the globe (such as 
China) did not, even though they had earlier access to the 
technology. This provides us with a good illustration that 
technological innovations need cultural variations that will 
successfully exploit selection pressures, that these evolutionary 

pathways are contingent upon taking (targeting and 
construction) a potentially successful direction. 

Pragmatically, contingency concerns are about completeness 
– about how exhaustive the process is. At the macro level, the 
goal is to design a framework whose use is likely to maximize 
the chances of finding and exploiting the general opportunities, 
particularly the most fruitful opportunities, for *computerized 
and *ontologized digitalization. At the micro level, the goal is to 
design a pipeline using the framework whose operation is likely 
to maximize the chances of finding and exploiting the specific 
opportunities. At both levels, the aim is to minimize the risk of 
overlooking valuable opportunities. 

bCLEARer is an example of such a framework at both the 
macro- and micro-levels. It is designed as a tool to systematically 
find and exploit opportunities for *computerized and 
*ontologized digitalization. 

4) Data pipelines as in vitro evolution  
If one restricts one’s perspective to bCLEARer-type data 

pipelines, then most of the process is (in a sense) in vitro – in a 
walled garden outside the original system. However, if one steps 
back the pipeline usually plays a role in a wider live in vivo 
ecosystem.  

Also, there are usually important (in a sense) in vivo tests 
where the information is returned to at least one operational 
system and tested ‘in the wild’. If possible, this is to both the 
original and similar systems. In an ideal configuration of the 
pipeline, the improvements are fed back into the original system 
on an ongoing basis and the results inspected. 

VII. OUTLIER DESIGN CHOICES  

In bCLEARer-type data pipeline information transmission 
there are two evolutionary processes each with their own 
information pathway. There is the information being processed 
by the pipeline and then there is the pipeline process itself – as 
code. Both are co-evolving intertwined in a process of reciprocal 
causation – each feeding of the other.  

The information being processed by the pipeline is the full 
data set, with no level of generality being excluded. The pipeline 
process is as automated as possible, so its information pathway 
as *computerized as possible – in other words, is digitalization 
shifted left as far as possible. Both these are outlier design 
choices. In this section we look at ways of explaining aspects of 
these outlier choices. 

1) Should transmission include data inheritance  
There is a further refinement of the evolving information 

transmission narrative related to the role data plays in it. In the 
methodologies we have been looking at, under the level of 
generality accessibility perspective, one can choose whether to 
include data (the lowest level of generality) in the ontologization 
process. Simplifying a little, the ‘ask-an-expert’ and ‘top-down-
classification’ methodologies exclude data, a bCLEARer-type 
data pipeline methodology includes it from the start. (The 
simplification is that the metadata-data-schema classification is 
about the syntax of the implementation, whereas generality is a 
semantic matter. However, there is good enough rough match 
between syntax and semantics here to make the point fair.) This 
is an all or nothing choice. Unlike in software development 



 

 

methodologies, especially waterfall, where the full dataset is 
included in the process part of the way through – typically 
towards the end. Hence, we label this as an architectural design 
choice on whether to shift (far) left or (far) right. 

a) Weismann’s distinction  

One can get a sense of this architectural design question from 
a distinction make in 19th century evolution theory. Weismann 
[73] turned the point that the mechanisms of transmission 
typically can only transmit some information in the source into 
a distinction. He made a basic (since refined) division of cells 
into the germline and the somatic line which gives us a neat, 
simplified picture of the underlying structure. These are similar 
to the The Selfish Gene’s [36] “replicators” and “vehicles”. 

The germline is those cells that are involved in reproduction 
and the transmission of genetic information from one generation 
to the next. Mutations in the germline are crucial for evolution 
because they can be passed to the next generation, in other 
words, they are heritable.  

The somatic line is the rest of the cells, the non-reproductive 
cells. They are not involved in the same way in transmission. 
Mutations in these cells may affect the individual and so their 
fitness, but are not transmitted on to offspring, so they are non-
hereditary.  

The germline cells have been called ‘immortal’ in the sense 
that they (or their genes) continue to exist indefinitely through 
reproduction – creating a lineage. Whereas the individuals and 
their somatic line cells die, they are mortal. Thus, changes in the 
germline can contribute to genetic diversity and evolutionary 
adaptation, while changes in somatic cells affect only the 
individual organism's health or fitness.  

If one maps Weismann into the world of computer systems, 
then there is a recurring pattern of transmissions where the data-
schema division aligns with the germ-somatic line division, 
where data is heritable, and schema is not.  

One clear example is the migrations between COTS systems 
which have an analogous structure to vertical genetic 
transmission. The data is migrated (transmitted) from the old 
application to the new application – and so is immortal in the 
sense it persists between generations. The schema (and the rest 
of the application) is like the somatic line in that it ‘dies’ with 
the old application. APIs (Application Programming Interfaces) 
also have an analogous transmission structure. The data is 
transmitted between applications whereas the schema is not.  

This data-immortal, schema-mortal picture is, like 
Weismann’s, a simplification. But it is broadly true in that the 
data persists much longer than the schema – though as it moves 
between applications it gets mapped to the new applications 
schema. 

We can frame this in economic terms. If we think of a 
biological unit (whether organic or silicon computer application) 
as storing information as an investment, one which ‘pays’ a 
return when used. Then information transmission can be seen as 
a way of preserving that investment across units to generate 
better ‘returns. When this insight is combined with the 
realization that in many current transmissions data is transmitted 

and schema is not, then data would seem to be a better place to 
invest in the information system ecosystem. 

2) Data as embodied competencies 
The use of competency questions is a rationalist approach. 

At its simplest, it assumes that we have sufficient knowledge to 
unaided target competencies that we require and then construct 
a computer system with the competencies. 

bCLEARer-type data pipelines are examples of an empirical 
approach. They start with source operational systems that we can 
verify have a certain level of competence. The datasets from 
these systems embody these competences. They must do, 
otherwise the systems would not operate. One can make these 
competencies explicit, exhibit them, through queries on the 
datasets – ones which are often already built into the source 
systems. 

Over time, the data structures in computer systems are 
twisted and turned to accommodate new requirements. Hence, 
there is an understandable feeling that the structures are 
somehow defiled, unclean. While it is probably true that the lack 
of cleanliness holds back some level of competency, it is not true 
that it indicates a (total) lack of competency. The computer 
systems operate, often at a sophisticated level, they still have the 
competencies. The *ontologization stage of the digitalization 
process addresses this lack of cleanliness providing a hyper 
hygienic level of cleanliness that lets new competencies emerge. 

3) Managing the inheritance – preserving and improving 

the investment 
If one shifts right and includes data in the process, then one 

is faced with a responsibility for managing that data. 

a) Transmission fidelity and transformations 

Transmission fidelity ensures that the transmitted 
information maintains its original shape and characteristics 
throughout the transmission. In genetic (DNA) inheritance a 
reasonably high transmission fidelity is needed to maintain 
organismal stability across the generations. But mutations, a 
failure of fidelity, are the variations that provide the raw material 
for evolution. So, if we want adaptation and natural selection to 
occur we need to ensure we have mutation and so variation. 

In the pipeline, the formal nature of digital computing means 
fidelity works in a different way. Though there is some 
degradation of the digital signal in some circumstances, this is 
not significant. So, we can pragmatically assume digital fidelity. 
We still need new variations, but these are formally created by 
the pipeline code.  

DevOps recognizes the importance of pipeline observability 
engineering [74]. The term is borrowed from control theory, 
where the "observability" of a system measures how well its 
state can be determined from its outputs. Majors et al. [74] 
suggests that what differentiates observability is its focus on not 
just identifying issues but aiming to minimize the amount of 
prior knowledge needed to resolve an issue. This has, 
historically, been a significant driver for bCLEARer where 
significant time used to be lost attempting to track and trace 
adaptations along the information pathway. Where tracking 
follows information, and tracing follows how information has 
influenced other information. This has led to the bCLEARer 



 

 

pipeline introducing an additional kind of observability – what 
we call ‘inspectability’ – which is the ability to map in full detail 
the transformation journey along the information pathway. 

We have been working over the last few decades evolving an 
inspectability framework. The specific goal of this inspectability 
framework is to be able to track and trace the items of 
information through the pipeline. This relies firstly on having a 
clear notion of identity for these items. This means, ironically, 
we needed to build an ontology for the information in the 
pipeline. We need to be able to extend this ontology to give us a 
clear notion of tracing – relating how items are transformed into 
new items. We then needed to build infrastructure into the 
pipeline to make this ontology explicit. Finally, we needed to 
able to access this ontology at regular inspection gates and have 
tools that allow us to view and visualize it.  

With this in place we can track and trace information items 
and their transformations through the pipeline, between pipeline 
runs and between pipeline evolutions. One useful visualization 
is the information items’ ontogenic tree – analogous to the 
phylogenetic tree – showing how the information items 
transform as they pass along the information pathway, as well as 
how data and schema coevolve. 

b) Automation and the dataset  

Automation has improved the pace and scale of 
digitalization’s directed evolution. It is well known that pace is 
a key factor in being able to generate change in a reasonable 
time. In evolutionary research the fruit fly has a key role due to 
a very short life cycle, typically around 10 days from egg to 
adult, leading to fast evolution. In innovation research, 
Christensen (see The Innovator’s Dilemma [69]) picked the disk 
drive industry because of its fast pace of change, referring to it 
as the ‘fruit fly’ of the business world.  

Pace is similarly important in ontologization pipelines. It has 
a couple of aspects which we have already noted a few times. 
The first and simplest is the pace of a single pipeline run – the 
information evolution. This needs to be quick enough to allow 
for frequent runs. The second is the pace of the evolution of the 
transformations in the run in a project – the project process 
evolution. The third is the pace of the evolution of the 
transformations across projects – the process evolution. 

A major impact on pace, as well as the investment required, 
is the development of the pipeline code. An important way to 
reduce costs was to evolve common code, where code is reused 
rather than written anew from scratch. The aim is for much of 
the final code to be common to multiple bCLEARer data 
pipeline projects. There are opportunities to build common code 
for the running of the pipeline. There are also opportunities to 
evolve general patterns of transformation (and the components 
of the transformations). One can see this as digitalizing the 
transformations – where the transformations are carried out by 
machines on machines. Using machines to build better machines 
has a long history. One well-known episode is the use of John 
"Iron-Mad" Wilkinson’s machine to precisely bore the large 
cylinders needed for James Watt’s steam engines – significantly 
improving efficiency over the previous manually crafted ones.  

Achieving the goal of a common codebase requires the 
adoption and coordination of multiple techniques. There are a 

variety of software development hygienes that reduce the cost of 
maintenance and enhancement such as clean coding [50]. There 
is also the continuing evolution of design patterns facilitated by 
a close analysis of the transformations. 

VIII. CONCLUSION 

We have used a two-dimensional analysis (over generality 
and digitalization) to identify new data pipeline-based 
opportunities for exploitation in the ontologization methodology 
design space that are not exploited by current mainstream. From 
a levels of generality perspective, there are opportunities to be 
more inclusive with data from the start of the pipeline. From a 
levels of digitalization perspective, there are opportunities to 
shift the computerization of the process to the far left, to the start 
of the pipeline. We have used bCLEARer as an example of how 
this can be done. 

We have noted that engineering of the ontologization process 
is design poor and raised the need to remedy this. As part of this 
remedy, we have factored the process into separate concerns. 
Divided it firstly into *computerization and *ontologization and 
then further divided *computerization into surface-
*computerization and deep-*computerization. We have 
suggested that we should consciously design the order of these 
processes.   

Finally, we have called attention to the point made in many 
fields, that setting the right context is critical to success. In this 
field, we suggest that a fruitful context is information evolution. 
We describe how this evolutionary perspective situates 
digitalization as the latest iteration in the overall evolution of 
information transmission. And then situates *computerization 
and *ontologization as key cultural practices in digitalization’s 
coevolution. 
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